梯度下降(gradient descent)算法简介

本文介绍了梯度下降法的基本概念及其应用,这是一种常用的最优化算法,尤其适用于机器学习和人工智能领域中模型参数的优化。文章详细阐述了该方法的求解过程,并通过一个简单的实例演示了如何使用梯度下降法来寻找函数的最小值。
摘要由CSDN通过智能技术生成

f31fbe096b63f62440e517b18644ebf81b4ca3c3.jpg

梯度下降法是一个最优化算法,通常也称为最速下降法。最速下降法是求解无约束优化问题最简单和最古老的方法之一,虽然现在已经不具有实用性,但是许多有效算法都是以它为基础进行改进和修正而得到的。最速下降法是用负梯度方向为搜索方向的,最速下降法越接近目标值,步长越小,前进越慢。

中文名 梯度下降
外文名 steepest descent (gradient descent)
用于 求解非线性方程组
类型 最优化算法

目录

1 简介
2 求解过程
3 例子
4 缺点

简介

梯度下降法(gradient descent)是一个最优化算法,通常也称为最速下降法。1

常用于机器学习和人工智能当中用来递归性地逼近最小偏差模型。

求解过程

顾名思义,梯度下降法的计算过程就是沿梯度下降的方向求解极小值(也可以沿梯度上升方向求解极大值)。

其迭代公式为 f603918fa0ec08fa2c7d88225cee3d6d55fbda32.jpg ,其中 f603918fa0ec08fa2d0c89225cee3d6d55fbda23.jpg 代表梯度负方向, 908fa0ec08fa513d5baef65b386d55fbb2fbd92b.jpg 表示梯度方向上的搜索步长。梯度方向我们可以通过对函数求导得到,步长的确定比较麻烦,太大了的话可能会发散,太小收敛速度又太慢。一般确定步长的方法是由线性搜索算法来确定,即把下一个点的坐标看做是ak+1的函数,然后求满足f(ak+1)的最小值的 即可。

因为一般情况下,梯度向量为0的话说明是到了一个极值点,此时梯度的幅值也为0.而采用梯度下降算法进行最优化求解时,算法迭代的终止条件是梯度向量的幅值接近0即可,可以设置个非常小的常数阈值。

例子

举一个非常简单的例子,如求函数 f603918fa0ec08fa2c7d88225cee3d6d55fbda32.jpg 的最小值。

利用梯度下降的方法解题步骤如下:

1、求梯度, f603918fa0ec08fa2d0c89225cee3d6d55fbda23.jpg

2、向梯度相反的方向移动 908fa0ec08fa513d5baef65b386d55fbb2fbd92b.jpg ,如下

f11f3a292df5e0fe7d9a1384596034a85fdf72b1.jpg ,其中, 908fa0ec08fa513d5e44ed5b386d55fbb3fbd94d.jpg 为步长。如果步长足够小,则可以保证每一次迭代都在减小,但可能导致收敛太慢,如果步长太大,则不能保证每一次迭代都减少,也不能保证收敛。

3、循环迭代步骤2,直到 2934349b033b5bb56871a57b33d3d539b700bc95.jpg 的值变化到使得 7dd98d1001e93901e71f09bb7eec54e736d19612.jpg 在两次迭代之间的差值足够小,比如0.00000001,也就是说,直到两次迭代计算出来的 7dd98d1001e93901e71f09bb7eec54e736d19612.jpg 基本没有变化,则说明此时 7dd98d1001e93901e71f09bb7eec54e736d19612.jpg 已经达到局部最小值了。

4、此时,输出 x ,这个 x 就是使得函数 f(x) 最小时的 x 的取值 。

MATLAB如下:

%% 最速下降法图示
% 设置步长为0.1,f_change为改变前后的y值变化,仅设置了一个退出条件。
syms x;f=x^2;
step=0.1;x=2;k=0;         %设置步长,初始值,迭代记录数
f_change=x^2;             %初始化差值
f_current=x^2;            %计算当前函数值
ezplot(@(x,f)f-x.^2)       %画出函数图像
axis([-2,2,-0.2,3])       %固定坐标轴
hold on
while f_change>0.000000001                %设置条件,两次计算的值之差小于某个数,跳出循环
    x=x-step*2*x;                         %-2*x为梯度反方向,step为步长,!最速下降法!
    f_change = f_current - x^2;           %计算两次函数值之差
    f_current = x^2 ;                     %重新计算当前的函数值
    plot(x,f_current,'ro','markersize',7) %标记当前的位置
    drawnow;pause(0.2);
    k=k+1;
end
hold off
fprintf('在迭代%d次后找到函数最小值为%e,对应的x值为%e\n',k,x^2,x)

梯度下降法处理一些复杂的非线性函数会出现问题,例如Rosenbrock函数:

其最小值在(x,y)=(1,1) 处,函数值为 f(x,y)=0。但是此函数具有狭窄弯曲的山谷,最小点 (x,y)=(1,1)就在这些山谷之中,并且谷底很平。优化过程是之字形的向极小值点靠近,速度非常缓慢。

43a7d933c895d143c3dda6f175f082025baf07bc.jpg

缺点

  • 靠近极小值时收敛速度减慢。
  • 直线搜索时可能会产生一些问题。
  • 可能会“之字形”地下降。

参考资料

  1. 维基百科 .维基百科[引用日期2013-05-23]
  2. 百度百科 . http://baike.baidu.com/item/梯度下降
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值