求渐近线

求$f(x)=\frac{x^{1+x}}{(1+x)^{x}}(x>0)$的斜渐近线

 

(i).斜渐近线系数

$$a=\lim_{x\to\infty}\frac{f(x)}{x}=\lim_{x\to\infty}\left(1-\frac{1}{x+1}\right)^{x}=e^{-1}$$

 

(ii)$$b=\lim_{x\to\infty}f(x)-ax=\lim_{x\to\infty}\frac{x}{e}\left(e^{1+x\ln \frac{x}{1+x}}-1\right)=\lim_{x\to\infty}\frac{x}{e}\left(1+x\ln \frac{x}{1+x}\right)$$

 

求此极限有两种方法。

方法一:利用 Peano型的Taloy公式有

$$\ln \frac{x}{x+1}=\ln\left(1-\frac{1}{x+1}\right)=-\frac{1}{x+1}-\frac{1}{(x+1)^{2}}+o\left(\frac{1}{(x+1)^{2}}\right),x\to \infty$$

代入上式即可得$b=2e^{-1}$.

 

方法二: 利用L'Hospital法则

$$\lim_{x\to\infty}\frac{x}{e}\left(1+x\ln \frac{x}{1+x}\right)=\lim_{x\to\infty}\frac{1}{e}\frac{1+x(\ln x-\ln (1+x))}{1/x}=\lim_{x\to\infty}\frac{1}{2e}\frac{\frac{1}{x(x+1)^{2}}}{x^{-3}}=2e^{-1}$$

注意:(1) 应用L'Hospital法则时,要验证是否满足条件。

         (2) 此处不宜使用倒代换$t=\frac{1}{x}$,因为倒代换之后无法继续使用L'Hospital法则。

转载于:https://www.cnblogs.com/zhangwenbiao/p/5432796.html

《RSMA与速率拆分在有限反馈通信系统中的MMSE基预编码实现》 本文将深入探讨RSMA(Rate Splitting Multiple Access)技术在有限反馈通信系统中的应用,特别是通过MMSE(Minimum Mean Square Error)基预编码进行的实现。速率拆分是现代多用户通信系统中一种重要的信号处理策略,它能够提升系统的频谱效率和鲁棒性,特别是在资源受限和信道条件不理想的环境中。RSMA的核心思想是将用户的数据流分割成公共和私有信息两部分,公共信息可以被多个接收器解码,而私有信息仅由特定的接收器解码。这种方式允许系统在用户间共享信道资源,同时保证了每个用户的个性化服务。 在有限反馈通信系统中,由于信道状态信息(CSI)的获取通常是有限且不精确的,因此选择合适的预编码技术至关重要。MMSE预编码是一种优化策略,其目标是在考虑信道噪声和干扰的情况下最小化期望平方误差。在RSMA中,MMSE预编码用于在发射端对数据流进行处理,以减少接收端的干扰,提高解码性能。 以下代码研究RSMA与MMSE预编码的结合以观察到如何在实际系统中应用RSMA的速率拆分策略,并结合有限的反馈信息设计有效的预编码矩阵。关键步骤包括: 1. **信道模型的建立**:模拟多用户MIMO环境,考虑不同用户之间的信道条件差异。 2. **信道反馈机制**:设计有限反馈方案,用户向基站发送关于信道状态的简化的反馈信息。 3. **MMSE预编码矩阵计算**:根据接收到的有限反馈信息,计算出能够最小化期望平方误差的预编码矩阵。 4. **速率拆分**:将每个用户的传输信息划分为公共和私有两部分。 5. **信号发射与接收**:使用预编码矩阵对信号进行处理,然后在接收端进行解码。 6. **性能评估**:分析系统吞吐量、误码率等性能指标,对比不同策略的效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值