ARMA模型识别

#ARMA(p,q)模型的定阶主要参考以下指标

     #自相关函数(ACF)

     #偏自相关系数(PACF)

     #信息准则(AIC/BIC)

#ARMA模型识别—ACF和PACF

 

  • ARMA(p,q)模型的定阶主要参考以下指标
  • 自相关函数(ACF)衡量序列和过去值之间的相关性,定义如下

 

13105041_VOME.png  13105041_qLEH.png13105041_mldn.png

 

?_?表示间隔为k的自相关系数 

  • 偏自相关系数(PACF)

13105041_Fd6r.png

 

  • 信息准则(AIC/BIC)

 

AIC = -2 ln(L) + 2 k    BIC = -2 ln(L) + ln(n)*k,其中L为似然函数,k为参数数量,n为样本数

AIC或者BIC准则选择,越小越好

 

 

  • ARMA模型识别—ACF和PACF

可以根据ACF和PACF的特征来判断模型

 

    AR模型中

13105041_kJ51.png

13105041_MLiL.png

13105041_RvcL.png

AR(1)模型ACF拖尾,PACF为一阶截尾  AR(p)模型PACF为p阶截尾

 

MA模型中

13105041_6aEo.png

13105041_gjsD.png

13105041_CiDk.png

MA(1)模型ACF一阶截尾,PACF拖尾, MA(q)的ACF为q阶截尾

 

ARMA模型中

13105041_Zd1D.png

13105041_VtzZ.png

13105041_73sD.png

ACF和PACF均表现为拖尾趋势,很难直观判断对应阶数

 

  • ACF和PACF定阶准则

13105041_JrgP.png

a、一般要求样本长度大于50,才能保证精度

b、对纯粹的 AR 模型或者MA模型可以定阶

c、可以识别 ARMA 过程,但不能定阶

d、在实际应用中由于估计误差,往往很难直观判断拖尾和截尾

e、p、q 一般取到3,过大会出现过拟合现象,如果取0~3之间,那么可以将阶数都带进去尝试下,选择AIC,BIC最小的阶数

 

转载于:https://my.oschina.net/u/1785519/blog/1572618

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值