在对时间序列分析的时候,可能会经常用到ARMA模型,其中p和q的值到底如何确定,有些书讲的不是太明白,只是讲到截尾和拖尾,至于到底如何判断,请看如下详细解释:
1、p是自相关AR模型的系数,而q是MA模型的系数;
2、在EVIEWS模型中会做出一个时间序列的自相关和偏相关图表,这个表是判断p和q值的依据;
3、所谓拖尾是自相关系数或者偏相关系数趋向于0,这个趋向过程有不同的表现形式,有几何型的衰减为0,有正弦波式的衰减;而所谓截尾是指从某阶后自相关或者偏相关系数为0。
4、判断标准:
AR(P) 自相关拖尾,偏相关p阶截尾
MA(q) 自相关q阶段截尾,偏相关拖尾
AR(p)MA(q) 自相关q阶段截尾,偏相关p阶截尾
1、p是自相关AR模型的系数,而q是MA模型的系数;
2、在EVIEWS模型中会做出一个时间序列的自相关和偏相关图表,这个表是判断p和q值的依据;
3、所谓拖尾是自相关系数或者偏相关系数趋向于0,这个趋向过程有不同的表现形式,有几何型的衰减为0,有正弦波式的衰减;而所谓截尾是指从某阶后自相关或者偏相关系数为0。
4、判断标准:
AR(P) 自相关拖尾,偏相关p阶截尾
MA(q) 自相关q阶段截尾,偏相关拖尾
AR(p)MA(q) 自相关q阶段截尾,偏相关p阶截尾