支持53种语言预训练模型,斯坦福发布全新NLP工具包StanfordNLP

StanfordNLP是一个结合CoNLL 2018任务软件和Stanford CoreNLP Python接口的工具包,提供多语言预训练模型,涵盖分词、词性标注、依存关系解析等功能。基于PyTorch,它提供了易于使用的本地Python实现和高效的神经网络管道。
摘要由CSDN通过智能技术生成
今日,Stanford NLP 团队发布了包含 53 种语言预训练模型的自然语言处理工具包 StanfordNLP,该工具包支持 Python 3.6 及之后版本,并基于 PyTorch,支持多种语言的完整文本分析管道,包括分词、词性标注、词形归并和依存关系解析,此外它还提供了与 CoreNLP 的 Python 接口。
支持53种语言预训练模型,斯坦福发布全新NLP工具包StanfordNLP

  • Github: https://github.com/stanfordnlp/stanfordnlp …
  • Paper: https://nlp.stanford.edu/pubs/qi2018universal.pdf …
  • PyPI: https://pypi.org/project/stanfordnlp/ …

以下内容介绍了 StanfordNLP 的相关论文、安装、使用以及设置方法。

StanfordNLP 结合了斯坦福团队参加 CoNLL 2018 Shared Task on Universal Dependency Parsing 使用的软件包,和 Stanford CoreNLP 软件的官方 Python 接口。StanfordNLP 不仅提供 CoreNLP 的功能,还包含一系列工具,可将文本字符串转换为句子和单词列表,生成单词的基本形式、词性和形态特征,以及适用于 70 余种语言中的句法结构。

StanfordNLP 用高度准确的神经网络构建而成,允许使用自己的标注数据进行高效训练和评估。这些模块基于 PyTorch 构建。

StanfordNLP 的特征:

  • 可以轻松设置本地 Python 实现;
  • 包含进行文本分析的完整神经网络管道(neural network pipeline),包括分词、多词 token(MWT)扩展、词形归并(lemmatization)、词性(POS)和形态特征标记以及依存关系解析;
  • 提供在 73 个 treebanks 上的 53 种人类语言的预训练神经模型;
  • 官方维护的接入到 CoreNLP 的稳定 Python 接口。

论文:Universal Dependency Parsing from Scratch

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值