自然语言预训练模型总结(PPT版)

本文总结了自然语言处理中预训练技术的发展,从Word Embedding到BERT,探讨了NNLM、Word2Vec、ELMO、GPT和BERT等模型。介绍了它们的工作原理、优缺点以及在NLP任务上的表现,特别是ELMO和BERT在解决多义词问题上的贡献。
摘要由CSDN通过智能技术生成

这是我个人的总结,参考了张俊林这篇很好的文章,请感兴趣看以下链接~

张俊林:放弃幻想,全面拥抱Transformer:自然语言处理三大特征抽取器(CNN/RNN/TF)比较

一、简介

自然语言处理中的预训练技术发展历程——从Word Embedding到Bert

  • Neural language models

  • Word Embedding

  • Pretrained language models

什么是语言模型?

为了能够量化地衡量哪个句子更合理,可以通过如图所示的函数,核心函数P的思想是根据句子里面前面的一系列前导单词预测后面跟哪个单词的概率大小(理论上除了上文之外,也可以引入单词的下文联合起来预测单词出现概率)。

句子里面每个单词都有个根据上文预测自己的过程,把所有这些单词的产生概率乘起来,数值越大代表这句话越合理。

 

二、Neural language models

神经网络语言模型(NNLM):

最早的神经网络语言模型: 根据前n个单词,通过前馈神经网络预测下一个单词

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值