闭环系统零、极点位置对时间响应性能指标的影响

本文探讨了闭环系统的稳定性条件,分析了不同极点配置下系统的时间响应特性,包括单调性和震荡性。深入讨论了超调量、调节时间和实数零极点对系统性能的影响,以及如何通过主导极点简化高阶系统。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

稳定性:

如果闭环极点全部位于s左半平面。则系统一定稳定;

 

运动形式:

如果闭环系统无零点,且闭环极点均为实数极点,则时间响应一定是单调的;如果闭环系统极点均为复数极点,则时间响应一般是震荡的。

 

超调量:

超调量主要取决于闭环复数主导极点的衰减率,并与其它闭环零极点接近坐标原点的程度有关。

 

调节时间:

调节时间主要取决于最靠近虚轴的闭环复数极点的复数的实部绝对值;如果实数极点距离虚轴最近,并且它没有实数零点,则调节时间主要取决于该实数的模值。

 

实数零极点的影响:

零点减小系统阻尼,使峰值时间提前,超调量增大;极点增大系统阻尼,使峰值之间迟后,超调量减小,它们的作用,随着它们本身接近坐标原点的程度而增强。

 

偶极子及其处理:

远离原点的偶极子,其影响可忽略;接近原点的偶极子其影响必须考虑

 

主导极点:

在s平面上,最靠近虚轴而附近有闭环零点的一些闭环极点,对系统的影响最大。结合偶极子的处理原则,将高阶系统简化为二、三个主导极点和一两个零点,然后估算系统的单位阶跃响应的性能指标。

转载于:https://www.cnblogs.com/derek32/p/3767536.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值