【论文阅读】EFFICIENT SYMMETRY-DRIVEN FULLY CONVOLUTIONAL NETWORK FOR MULTIMODAL BRAIN TUMOR SEGMENTATION...

写在前面:之前看过该作者的两篇文章都引用了他自己的这一篇,终于能检索到了。虽然不再做脑瘤分割,但还是想将当初不清楚的细节重新拿出来审视一番。。

此文章发于ICIP2017.

 

题目:EFFICIENT SYMMETRY-DRIVEN FULLY CONVOLUTIONAL NETWORK FOR MULTIMODAL BRAIN TUMOR SEGMENTATION

作者:Haocheng Shen⋆ Jianguo Zhang⋆ Weishi Zheng

数据集:BraTS 2013

网络结构:

网络结构中下采样部分类似于VGG 。

网络输入是 3D MRI 的 2D 切片。

之前一直不懂:除了数据集中的四种模态的切片,另外那四张哪里来的呢?

作者利用 Gareth Loy and Jan-Olof Eklundh, “Detecting symme- try and symmetric constellations of features,” in ECCV, 2006, pp. 508–521. 中的方法找到脑部切片的中轴线(红色虚线)。为了避免噪声的影响,作者首先采用了5*5的高斯核滤波。以中轴线为中心寻找对称点,并用sigmoid函数将对称点的灰度值归一化到[0,1].

图中第一行为过程,第二行为四个模态处理后的结果。

在线测评结果:

效果:

 

总结:

亲测没有另外四个通道作为输入,效果很不好,还不如U-net,但当时测试的时候并不知道另外四个通道怎么获得的所以没有测试。可能预处理就是这般重要吧。

 

转载于:https://www.cnblogs.com/xiangfeidemengzhu/p/9559864.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值