写在前面:之前看过该作者的两篇文章都引用了他自己的这一篇,终于能检索到了。虽然不再做脑瘤分割,但还是想将当初不清楚的细节重新拿出来审视一番。。
此文章发于ICIP2017.
题目:EFFICIENT SYMMETRY-DRIVEN FULLY CONVOLUTIONAL NETWORK FOR MULTIMODAL BRAIN TUMOR SEGMENTATION
作者:Haocheng Shen⋆ Jianguo Zhang⋆ Weishi Zheng
数据集:BraTS 2013
网络结构:
网络结构中下采样部分类似于VGG 。
网络输入是 3D MRI 的 2D 切片。
之前一直不懂:除了数据集中的四种模态的切片,另外那四张哪里来的呢?
作者利用 Gareth Loy and Jan-Olof Eklundh, “Detecting symme- try and symmetric constellations of features,” in ECCV, 2006, pp. 508–521. 中的方法找到脑部切片的中轴线(红色虚线)。为了避免噪声的影响,作者首先采用了5*5的高斯核滤波。以中轴线为中心寻找对称点,并用sigmoid函数将对称点的灰度值归一化到[0,1].
图中第一行为过程,第二行为四个模态处理后的结果。
在线测评结果:
效果:
总结:
亲测没有另外四个通道作为输入,效果很不好,还不如U-net,但当时测试的时候并不知道另外四个通道怎么获得的所以没有测试。可能预处理就是这般重要吧。