(脑肿瘤分割笔记-PartTwo)一种高效的脑肿瘤三维分割嵌入网络

目录

Title:Efficient embedding network for 3D brain tumor Segmentation

摘要

方法

编码器分支

解码器分支

损失函数

总结


 

Title:Efficient embedding network for 3D brain tumor Segmentation

摘要

脑胶质瘤的特点是浸润性,边界模糊,在本文中,作者研究了一种转移二维分类网络性能的方法,以实现对脑肿瘤的三维语义分割。作者提出了一个不对称的UNet网络,将EfficientNet模型作为编码分支的一部分。由于输入数据是三维的,编码器的第一证致力于缩小第三维,以适应Efficient的输入。

总之本文提出了一种有效的方法,在不丢失三维一致性的前提下,将任何二维分类的体系结构转换为三维分割目的。本文提出的思想是可推广的,以便将任何低维分类体系结构集成到另一个高维体系结构,并且不丢失空间一致性。

方法

本文提出的方法遵循卷积编码器和解码器的结构,它是由一个非对称的大编码器提取图像特征和一个较小的解码器重建分割掩码,作者在编码器分支中嵌入了提出的称为EfficientNet的网络。

编码器分支

编码过程有两个步骤,首先作者将三维数据编码为二维数据,同时保持高度和宽度的原始大小,仅仅将深度压缩为三个通道。其次数据准备好开始第二步编码,第二步编码是没有全连接层的EfficientNet网络。提出的网络框架的架构图如下所示:

如图所示,其输入是一个单通道裁剪的3D MRI。片间编码器和解码器都由一系列具有规范的残差块组成。解码器的输出有三个通道,与输入通道的空间大小相同,在每个EfficientNet块下显示了相应的输出维度。

  如图1所示,EfficientNet用块表示,与原始版本相同。但是,只表示跳跃连接层中涉及的块。片间编码部分使用卷积块,卷积块由两个卷积层组成,分别带有归一化和ReLU,然后是跳跃连接。在[基于自动编码器正则化的三维MRI脑肿瘤分割]的工作之后,作者选择使用组归一化,它将通道分成组,然后使用每组的均值和方差进行归一化。它似乎比传统的批处理规范化性能更好,特别是当批处理大小很小的时候。
  作者假设输入体积的宽度为W,高度为H,深度为D,有C个通道。数据经过3D-2D压缩步骤。因此,深度通过因子3、3和4减小,最终达到3的深度大小,这与EfficientNet所需的通道数量相对应。在这个收缩过程中,单个3D批的宽度和高度没有修改。根据三维数据,可以改变和调整不同的深度还原因子。在作者的研究中,维度的变化如表1所示。在此过程后,通过二维收缩过程得到的缩减数据作为EfficientNet模型的输入。经过不同的模块其维度发生的变化如下图:

解码器分支

与编码部分不对称,解码器完全由同质块组成,如图1所示。显然,连接到EfficientNet的解码部分是一个2D解码器,而片间解码是一个3D解码器。解码器的每一层首先对空间维度进行上采样,将特征数量乘以2倍,然后跳过连接。一个sigmoid函数被用来激活解码器的输出,解码器有三个通道,对应于与输入具有相同空间大小的类的数量。

损失函数

许多先前的网络都是用交叉熵损失函数来进行训练,然而其对于结果的描绘可能不是理想的dice得分,本文使用一个soft-dice损失函数来训练所提出的网络,也被称为软Dice损失函数,其公式如下:

 Ptrue和Ppred分别代表ground truth和预测标签。脑MRI分割是一项具有挑战性的任务,部分原因是由于严重的失衡。在整个训练过程中,仅使用固定损失函数、交叉熵或dice来解决这个问题并不是最佳策略。因此,两个损失函数的线性组合通常被认为是最佳实践,并生成更稳健和最优的分割模型。在实际应用中,最终损失函数为:

L=Lcross-Ldice

总结

在本文中,作者介绍了一个通用的3D-UNet框架,通过重用和嵌入任何2D分类器网络来实现性能传输,编码器和解码器由两个阶段组成,3D输入数据经过深度收缩的过程,将3D数据转换为2D数据。这个过程是一个连续的过程,三维卷积块和最大池化块只减少第三维,转换后的输出数据可以通过任何二维分类网络进行编码,此外解码还要经过2D解码阶段,然后是3D解码过程。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值