当涉及到二分类时,我们第一想到的就是logistic回归。前面也讲解过其他的二分类其的构建。本文主要分享logistic有关的二分类,无序多分类,有序多分类和条件logistic回归。
本文因没有配图,略显枯燥,建议在运行本代码的过程中1.全神贯注,盯住每一个结果;2.建议对统计学知识有一个自学或复习,甚至建议各位朋友找到相关关于logistic回归的帖子或教材,配合着学习/理解,同时大家多多交流。通过这些合作,相信会学好logistic回归,包括其他知识。多学习,多总结,取长补短,才能进步。
##一. 二分类,涉及到二分类数据,可以使用logistic回归进行危险因素和相关因素的探索
##目的是构建P=P(Y=1 |X)与影响因素x之间的关系,出现阳性概率的结果
rm(list = ls())
library(MPV)
knitr::kable(head(p13.2))
log_fix <- glm(y~x,family = "binomial",data = p13.2)
summary(log_fix)
#结果解读
exp(coef(log_fix)[2])#结果=1.000201,即x每增加一个单位,y相应的增加1.00020倍
exp(confint(log_fix)[2,])##95%CI,若pvalue<0.05,则95%不包括1,反之包括1
##其实在进行logistics后还需要判断或检测是否有过度离势φ=Deviance