r 多元有序logistic回归_R_语言 logistic回归分析

本文介绍了R语言中的logistic回归应用,包括二分类、无序多分类和有序多分类,以及条件logistic回归。建议在学习过程中结合统计学知识,并关注过度离势的检测与校正。通过分享和交流,加深对logistic回归的理解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

当涉及到二分类时,我们第一想到的就是logistic回归。前面也讲解过其他的二分类其的构建。本文主要分享logistic有关的二分类,无序多分类,有序多分类和条件logistic回归。

本文因没有配图,略显枯燥,建议在运行本代码的过程中1.全神贯注,盯住每一个结果;2.建议对统计学知识有一个自学或复习,甚至建议各位朋友找到相关关于logistic回归的帖子或教材,配合着学习/理解,同时大家多多交流。通过这些合作,相信会学好logistic回归,包括其他知识。多学习,多总结,取长补短,才能进步。

##一. 二分类,涉及到二分类数据,可以使用logistic回归进行危险因素和相关因素的探索

##目的是构建P=P(Y=1 |X)与影响因素x之间的关系,出现阳性概率的结果
rm(list = ls())
library(MPV)
knitr::kable(head(p13.2))
log_fix <- glm(y~x,family = "binomial",data = p13.2)
summary(log_fix)
#结果解读
exp(coef(log_fix)[2])#结果=1.000201,即x每增加一个单位,y相应的增加1.00020倍
exp(confint(log_fix)[2,])##95%CI,若pvalue<0.05,则95%不包括1,反之包括1

##其实在进行logistics后还需要判断或检测是否有过度离势φ=Deviance

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值