折线段的拐向判断

矢量:如果有向现代p1p2的起点p1在坐标原点,可以称它为矢量。

 

矢量加减法:设二维矢量P=(x1,y1),Q=(x2,y2),则矢量加法定义为P+Q=(x1+x2, y1+y2);矢量剪发为P-Q=(x1-x2, y1-y2)。显然有P+Q=Q+P, P-Q=-(Q-P)。满足平行四边形和三角形法则。

 

矢量叉积:设矢量P=(x1, y1), Q=(x2, y2), 则矢量叉积定义为由(0,0)、p1、p2和p1p2所组成的平行四边形的带符号面积,即P✖️Q=x1*y2 - x2*y1,其结果是一个标量。并且PXQ=-1(QXP),和PX(-Q) = -(PXQ)。叉积的一个非常重要的性质是可以通过它的符号判断两个矢量互相之前的顺逆时针关系:

若PXQ>0,则P在Q的顺时针方向。

若PXQ<0,则P在Q的逆时针方向。

若PXQ=0,则P与Q共线,但可能同向也可能反向。

 

折线段的拐向判断:对于共有端点的线段p0p1和p0p2,通过计算(p2 - p0)x(p1 - p0)的符号可以确定折线段的拐向:

1. 若(p2-p0)x(p1-p0) < 0,则p0p1在p1点拐向左侧后得到p0p2。

2.若(p2-p0)x(p1-p0) > 0,则p0p1在p1点拐向右侧后得到p0p2。

3.若(p2-p0)x(p1-p0) = 0,则p0、p1、p2三点共线。

 

 

 

转载于:https://my.oschina.net/1024bits/blog/779158

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值