汉诺塔是怎样通过递归算法实现的?
这个问题困扰了我一段时间,今天回过头来想想似乎明白了,因此在这里记录下自己想法。
首先贴上在Python上的代码:
1 # -*- coding: utf-8 -*- 2 3 def move(n,a,b,c): 4 if n == 1: 5 print(a+"-->"+c) 6 if n > 1: 7 move(n-1,a,c,b) 8 print(a+"-->"+c) 9 move(n-1,b,a,c) 10 11 move(4,'A','B','C')
为了完成这个任务,需要将此母任务分解为三个子任务:
1.把A上面的n-1个盘,移动到B上
2.把A”最下面的第n个盘移动到C上
3.把第一步中的n-1个盘从B移动到C上,任务完成。
第一个任务,是将n-1个盘移动到B上,通过代码:
move(n-1,a,c,b)
这是告诉电脑,要一次一块,将A上的n-1个盘移动到B上,可以看成是一步完成的。
接着,将A中的第n个盘移到C上:
print(a+"-->"+c)
最后:
move(n-1,b,a,c)
将B上的n-1个盘全部移到C上,完成任务。