一、概述
在本篇文章中将对四种聚类算法(K-means,K-means++,ISODATA和Kernel K-means)进行详细介绍,并利用数据集来真实地反映这四种算法之间的区别。
首先需要明确的是上述四种算法都属于"硬聚类”算法,即数据集中每一个样本都是被100%确定得分到某一个类别中。与之相对的"软聚类”可以理解为每个样本是以一定的概率被分到某一个类别中。
先简要阐述下上述四种算法之间的关系,已经了解过经典K-means算法的读者应该会有所体会。没有了解过K-means的读者可以先看下面的经典K-means算法介绍再回来看这部分。
(1) K-means与K-means++:原始K-means算法最开始随机选取数据集中K个点作为聚类中心,而K-means++按照如下的思想选取K个聚类中心:假设已经选取了n个初始聚类中心(0<n<K),则在选取第n+1个聚类中心时:距离当前n个聚类中心越远的点会有更高的概率被选为第n+1个聚类中心。在选取第一个聚类中心(n=1)时同样通过随机的方法。可以说这也符合我们的直觉:聚类中心当然是互相离得越远越好。这个改进虽然直观简单,但是却非常得有效。
(2) K-means与ISODATA:ISODATA的全称是迭代自组织数据分析法。在K-means中,K的值需要预先人为地确定,并且在整个算法过程中无法更改。而当遇到高维度、海量的数据集时,人们往往很难准确地估计出K的大小。ISODATA就是针对这个问题进行了改进,它的思想也很直观:当属于某个类别的样本数过少时把这个类别去除,当属于某个类别的样本数过多、分散程度较大时把这个类别分为两个子类别。
(3) K-means与Kernel K-means:传统K-means采用欧式距离进行样本间的相似度度量,显然并不是所有的数据集都适用于这种度量方式。参照支持向量机中核函数的思想,将所有样本映射到另外一个特征空间中再进行聚类,就有可能改善聚类效果。本文不对Kernel K-means进行详细介绍。
可以看到,上述三种针对K-means的改进分别是从不同的角度出发的,因此都非常具有代表意义。目前应用广泛的应该还是K-means++算法(例如2016年底的NIPS上也有针对K-means++的改进,感兴趣的读者可以进一步学习)。
二、经典K-means算法
算法描述如下,非常清晰易懂。经典K-means算法应该是每个无监督学习教程开头都会讲的内容,故不再多费口舌说一遍了。
值得一提的是关于聚类中心数