逻辑回归---学习笔记整理

逻辑回归

逻辑回归(Logistic Regression)是机器学习中的一种分类模型,逻辑回归是一种分类算法,虽然名字中带有回归,但是它与回归之间有一定的联系。由于算法的简单和高效,在实际中应用非常广泛。

逻辑回归的原理

逻辑回归的输入就是一个线性回归的结果。
在这里插入图片描述

激活函数

sigmoid函数
在这里插入图片描述

判断标准
在这里插入图片描述

回归的结果输入到sigmoid函数当中
输出结果:[0, 1]区间中的一个概率值,默认为0.5为阈值

逻辑回归最终的分类是通过属于某个类别的概率值来判断是否属于某个类别,并且这个类别默认标记为1(正例),另外的一个类别会标记为0(反例)。(方便损失计算)
输出结果解释(重要):假设有两个类别A,B,并且假设我们的概率值为属于A(1)这个类别的概率值。现在有一个样本的输入到逻辑回归输出结果0.6,那么这个概率值超过0.5,意味着我们训练或者预测的结果就是A(1)类别。那么反之,如果得出结果为0.3那么,训练或者预测结果就为B(0)类别。
在这里插入图片描述

损失以及优化损失

损失
逻辑回归的损失,称之为对数似然损失,公式如下:
分开类别:
在这里插入图片描述
在这里插入图片描述

综合完整损失函数
在这里插入图片描述

在这里插入图片描述

优化

同样使用梯度下降优化算法,去减少损失函数的值。这样去更新逻辑回归前面对应算法的权重参数,提升原本属于1类别的概率,降低原本是0类别的概率。

逻辑回归api

sklearn.linear_model.LogisticRegression(solver=‘liblinear’, penalty=‘l2’, C = 1.0)

solver可选参数:{‘liblinear’, ‘sag’, ‘saga’,‘newton-cg’, ‘lbfgs’},
默认: ‘liblinear’;用于优化问题的算法。
对于小数据集来说,“liblinear”是个不错的选择,而“sag”和’saga’对于大型数据集会更快。
对于多类问题,只有’newton-cg’, ‘sag’, 'saga’和’lbfgs’可以处理多项损失;“liblinear”仅限于“one-versus-rest”分类。
penalty:正则化的种类
C:正则化力度
默认将类别数量少的当做正例
LogisticRegression方法相当于 SGDClassifier(loss=“log”, penalty=" "),SGDClassifier实现了一个普通的随机梯度下降学习。而使用LogisticRegression(实现了SAG)

案例:癌症分类预测

数据集
在这里插入图片描述

数据描述
(1)699条样本,共11列数据,第一列用语检索的id,后9列分别是与肿瘤
相关的医学特征,最后一列表示肿瘤类型的数值。
(2)包含16个缺失值,用”?”标出。
在这里插入图片描述

1.获取数据

import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression

# 1.获取数据
names = ['Sample code number', 'Clump Thickness', 'Uniformity of Cell Size', 'Uniformity of Cell Shape',
                   'Marginal Adhesion', 'Single Epithelial Cell Size', 'Bare Nuclei', 'Bland Chromatin',
                   'Normal Nucleoli', 'Mitoses', 'Class']

data = pd.read_csv("https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data",
                  names=names)
data.head()

在这里插入图片描述

2.基本数据处理

2.1 缺失值处理

data = data.replace(to_replace="?", value=np.NaN)
data = data.dropna()

2.2 确定特征值,目标值

x = data.iloc[:, 1:10]
x.head()
y = data["Class"]
y.head()

2.3 分割数据

x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=22)

3.特征工程(标准化)

transfer = StandardScaler()
x_train = transfer.fit_transform(x_train)
x_test = transfer.transform(x_test)

4.机器学习(逻辑回归)

estimator = LogisticRegression()
estimator.fit(x_train, y_train)

5.模型评估

y_predict = estimator.predict(x_test)
y_predict
estimator.score(x_test, y_test)

分类评估方法
混淆矩阵
在分类任务下,预测结果(Predicted Condition)与正确标记(True Condition)之间存在四种不同的组合,构成混淆矩阵(适用于多分类)
在这里插入图片描述

精确率(Precision)与召回率(Recall)
精确率:预测结果为正例样本中真实为正例的比例
在这里插入图片描述
召回率:真实为正例的样本中预测结果为正例的比例(查得全,对正样本的区分能力)
在这里插入图片描述

F1-score
还有其他的评估标准,F1-score,反映了模型的稳健型
在这里插入图片描述
在这里插入图片描述

分类评估报告api
sklearn.metrics.classification_report(y_true, y_pred, labels=[], target_names=None )

y_true:真实目标值
y_pred:估计器预测目标值
labels:指定类别对应的数字
target_names:目标类别名称
return:每个类别精确率与召回率

6、获取预测值

y_predict = estimator.predict(x_test)

classification_report(y_true,y_pred,labels=以什么标记正例和假例, target_names=正假例标签名)

res = classification_report(y_true=y_test,y_pred=y_predict,labels=(2,4),target_names=('良性','恶性'))
print(res) # str类型

ROC曲线与AUC指标

TPR与FPR

TPR = TP / (TP + FN) 正例召回率
所有真实类别为1的样本中,预测类别为1的比例
FPR = FP / (FP + TN) 1-假例召回率
所有真实类别为0的样本中,预测类别为1的比例

ROC曲线

ROC曲线的横轴就是FPRate,纵轴就是TPRate,当二者相等时,表示的意义则是:对于不论真实类别是1还是0的样本,分类器预测为1的概率是相等的,此时AUC为0.5
在这里插入图片描述
在这里插入图片描述

AUC指标

AUC的概率意义是随机取一对正负样本,正样本得分大于负样本的概率
AUC的最小值为0.5,最大值为1,取值越高越好
AUC=1,完美分类器,采用这个预测模型时,不管设定什么阈值都能得出完美预测。绝大多数预测的场合,不存在完美分类器。
0.5<AUC<1,优于随机猜测。这个分类器(模型)妥善设定阈值的话,能有预测价值。
最终AUC的范围在[0.5, 1]之间,并且越接近1越好
AUC计算API

from sklearn.metrics import roc_auc_score

sklearn.metrics.roc_auc_score(y_true, y_score)

计算ROC曲线面积,即AUC值
y_true:每个样本的真实类别,必须为0(反例),1(正例)标记
y_score:预测得分,可以是正类的估计概率、置信值或者分类器方法的返回值
0.5~1之间,越接近于1约好

y_test = np.where(y_test > 2.5, 1, 0)

print("AUC指标:", roc_auc_score(y_test, y_predict)

AUC只能用来评价二分类
AUC非常适合评价样本不平衡中的分类器性能

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值