题解——洛谷P2613 【模板】有理数取余(扩展欧几里得算法+逆元)

题面

题目描述

给出一个有理数 c=\frac{a}{b}   ,求  c mod19260817  的值。

输入输出格式

输入格式:

一共两行。

第一行,一个整数 \( a \) 。
第二行,一个整数 \( b \) 。

 

输出格式:

一个整数,代表求余后的结果。如果无解,输出Angry!

说明

对于所有数据,\(  0\leq a,b \leq 10^{10001},0a,b1010001 \) 

 

很平常的一道膜板题,求解除法取模需要利用乘法逆元的知识

直接扩展欧几里得算法求解逆元

至于数据范围,可以直接在读入时取模,不需要毒瘤高精度qwq

下面放代码

#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
long long a,b;
const int MOD = 19260817;
long long read(void){
    long long x=0;
    char c;
    c=getchar();
    while(c==' '||c=='\n'||c=='\r'||c=='\0')
        c=getchar();
    while(c<='9'&&c>='0'){
        x=((x*10%MOD)+(c-'0')%MOD)%MOD;
        c=getchar();
    }
    return x;
}
long long exgcd(long long a,long long b,long long &x,long long &y){
    if(b==0){
        x=1;
        y=0;
        return a;
    }
    long long res = exgcd(b,a%b,x,y);
    long long t=x;
    x=y;
    y=t-a/b*y;
    return res;
}
int main(){
    a=read();
   // printf("%d\n",a);
    b=read();
   // printf("%d\n",b);
    long long x,y;
    if(exgcd(b,MOD,x,y)==1){
        long long nx=((x%MOD)+MOD)%MOD;
        printf("%lld",((a%MOD)*(nx%MOD))%MOD);
    }
    else{
        printf("Angry!\n");
    }
    return 0;
}

 

转载于:https://www.cnblogs.com/dreagonm/p/9364518.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值