【转载】弧长法(Riks Method)的基本原理

弧长法是结构非线性分析中的稳定计算方法,用于跟踪屈曲路径。在ABAQUS和ANSYS等商业软件中广泛使用。文章解释了弧长法的迭代过程,通过控制荷载增量步来越过极值点,介绍了如何确定迭代路径和荷载因子。还提供了一个通用求解程序的概要,并通过算例展示了其正确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原地址:http://blog.163.com/zpfzcjndx@126/blog/static/635456812013017115922938/

       弧长法(Riks method)是目前结构非线性分析中数值计算最稳定、计算效率最高且最可靠的迭代控制方法之一,它有效地分析结构非线性前后屈曲及屈曲路径跟踪使其享誉"结构界"。大多数商业有限元软件(如ABAQUS、ANSYS等)也都将其纳入计算模块,作为一名工科生,机械式地"Step by Step"点击这些商业软件对话框的时候需"知其然,知其所以然",否则必将"Rubbish in,Rubbish out"。

图1 弧长法迭代求解过程

图1 所示为弧长法的迭代求解过程,下标表示第个荷载步,上标表示第个荷载步下的第次迭代,显然,若荷载增量,则迭代路径为一条平行于轴的直线,即为著名的牛顿—拉夫逊法。

设第个荷载步收敛于,那么对于第个荷载步来说,需要进

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值