第一章:
复数的模,三角表示法,指数表示法,求根与求幂,平面映射
复数为x + yi
复数的模为 sqrt(x2 + y2)
复数的三角表达式为 sqrt(x2 + y2)(cosθ + sinθ * i)
复数的指数表达式为 sqrt(x2 + y2)eiθ
求复数的n次幂可使用指数表达式简化计算
求复数的i次根号可使用sqrt(x2 + y2)eiθ + 2kπ的i次根号求得, 一共有i个解 k = 0,1,2,,,,,,i-1
平面映射 w = 1/z
设w = u + i*v z = x + y*i
带入w = 1/z可得 x = u/(u2 + v2) y = -v/(u2 + v2)
带入z平面中的方程即可得到w平面上对应的方程
第二章:
可导性,解析性,初等函数的化简
可导:从各个方向趋近于点p的导数相同即点p可导
可微:同一元函数
解析:在p和p的邻域内处处可导
可导的充要条件:
f(z) = u(x,y) + i*v(x,y)
u,v在定义域点x+iy可微且满足柯西黎曼方程
柯西黎曼方程: ∂u / ∂x = ∂v / ∂y ∂u / ∂y = -∂v / ∂x
解析的充要条件:
f(z) = u(x,y) + i*v(x,y)
u,v在定义域D内处处可微且满足柯西黎曼方程
柯西黎曼方程: ∂u / ∂x = ∂v / ∂y ∂u / ∂y = -∂v / ∂x
区别在于一个是点,一个是定义域
初等函数
大部分初等函数服从实数域上初等函数的性质
z = x + i*y
ez = ex(cosy + i siny)
ez + 2kπi = ez
Lnz = ln(|z|) + i Argz
因为角度又可以加2kπ
所以定义主值为 ln(|z|) + i argz
chZ = (ez + e-z ) / 2
shZ = (ez - e-z ) / 2
thZ = (ez - e-z ) / (ez + e-z )
chZ' = shZ
shZ' = chZ
cos(Z) = (ezi + e-zi ) / 2
sin(Z) = (ezi - e-z i) / 2
ab = eblna
第三章
积分的定义同实数域上的相同,但与实数域不同的是,面积不一定是实数,有可能是虚数
当f(z)解析时,积分为0,不解析时,使用如下解法
积分的计算方法1:
按照积分曲线,将x,y用t表示,将i当成常数提出来,然后就是普通的积分了,要注意的是,dz也要相应的转化为dt
柯西古萨基本定理:
若f(z)在单通区域内处处解析,那么f(z)沿B内的任何一条封闭曲线C的积分为0
复合闭路定理:
设C为多联通区域D的一条简单闭曲线,C1,,,,,Cn是在C内部的简单闭曲线,他们不包含也互补相交
并且C,C1,,,,,Cn为边界的区域全含与D,如果f(z)在D那么
∫f(z)dz 在C上的积分=在C1,,,,,Cn上积分的和
∫ 1 / (z-z0) dz = 2πi
∫ 1 / (z-z0)n dz = 0 n>=2
积分的计算方法2:
求积分时将导致函数不解析的点提取出来
将积分区域分割成一部分一部分的小块,每一小块包含一个不解析点
将函数转化为 1/(z - z0)的形式即可求得积分
积分的计算方法3:
f(z0) = 1 / 2πi * ∫ f(z) / (z-z0) dz
fn(z0) = n! / 2πi * ∫ f(z) / (z-z0)n+1 dz
由已知的调和函数求解析函数
函数是调和函数的充要条件:
α2Φ / αx2 + α2Φ / αy2 = 0
若函数f(x,y) = u(x,y) + i*v(x,y)中的u, v满足柯西黎曼方程
则称u,v为共轭调和函数
第四章
判断级数是否收敛
1.分别判断实部和虚部是否收敛,若均收敛则级数收敛
2.将级数用e来表达,若收敛,则级数收敛 参见P142 1.2
判断是否收敛
把级数分为两个部分,每个部分都要满足收敛条件
an+1 / an < 1
n√ ̄an < 1
满足这两个条件即收敛
绝对收敛性
判断n->∞|an|是否收敛
要记住Σ 1/n发散
幂级数的收敛半径
幂级数为 Σai*zi
那么收敛半径为 1/limnΓ|an|
若lim|cn+1 / cn|为常数u
则收敛半径 为 1/u
函数的幂级数展开
常见幂级数展开有 1 / (1 - z) = 1 + z + z2 + ......+ zn
对于一个函数我要想办法把他转变为1 / (1 - f(z)) 这样我的幂级数展开就可以写为
在转化过程时
对于原函数g(z)
我找到距离展开点最近的奇点
在这个范围内画圆
在我对函数进行变形的过程时
保证在这个范围内,函数一直是解析的即可
1 / (1 - f(z)) = 1 + f(z) + f2(z) + ....... + fn(z)
若要求在z0处展开
则要将函数转化为 1 / (1 - f(z - z0))
对于负高次函数,可通过 1 / (1 - f(z - z0))求导的方式来获得泰勒展开式
洛朗级数
若f(z)在z0处不解析,那就不能使用幂级数展开了
这个时候就可以使用洛朗级数展开
对于给定圆环域
我先将函数展开成f(z) = Σ g(z) * 1 / (1 - c(z)) 的形式
要求c(z) 在给定圆环域内 n ->∞时 c(z)n必须收敛
然后再按照幂级数展开的方式去做即可
第五章
奇点,极点
若f(z) 在z0处不解析 则z0为f(z)的奇点
若lim z -> z0 f(z) 为常数,则z0为f(z)的可去奇点
若lim z -> z0 f(z) = ∞,则z0为f(z)的极点
若lim z -> z0 f(z) = 不存在,则z0为f(z)的本性奇点
对于极点来说,若z0重复出现n次,则z0为n级极点
若f(z) = P(z) / Q(z)
那么 z0是Q(Z)的n级0点,是P(z)的m级0点
那么z0是f(z)的n - m级极点
留数
若z0为f(z)的一级奇点
Res(f(z), z0) = lim z->z0 (z - z0) *f(z)
若z0为f(z)的m级奇点
Res(f(z), z0) = lim z->z0 1/(m-1)! * ( dm-1(z-z0)m f(z) ) / dzm-1
若f(z) = P(z) / Q(z)
若z0为一级极点
那么Res(f(z), z0) = lim z->z0 P(z) / Q'(z)
对于f(z)其在复平面上所有留数的和为0,若圆周内留数过多,可求圆周外的留数的相反数来代替元周内的留数
Res(f(z), ∞) = Res(f(1/z) * 1 / z2, 0)
留数定理
∫ f(z)dz = 2πi*Res(f(z), z0)
要求圆域内只有z0一个极点
求定积分
sinθ = (z2 - 1 )/ 2iz
cosθ = (z2 + 1 )/ 2z
dθ = dz / iz