ThreadLocal

在多线程环境下,每个线程都有自己的数据。一个线程使用自己的局部变量比全局变量好,因为局部变量只有线程自己能看到,不会影响其他线程,而全局变量必须加锁。

但是局部变量也有问题,就是在函数调用的时候,传递起来很麻烦:
def process_student(name):
    std =Student(name)

    do_task_1(std)

    do_task_2(std)

def do_task_1(std):
    do_task_1(std)

    do_task_2(std)

def do_task_2(std):
    do_task_1(std)

    do_task_2(std)

每个函数一层一层调用都这么传递参数那还行?用全局变量也不行,因为每个线程处理不同的Student对象,不能共享。

如果用一个全局dict存放所有的Student对象,然后以thread自身作为key获得线程对应的Student对象如何?

global_dict ={}

def std_thread(name):
    std =Student(name)

    global_dict[threading.current_thread()] =std

    do_task_1()

    do_task_2()


def do_task_1():
    std =global_dict[threading.current_thread()]

    ...

def do_task_2():
    std =global_dict[threading.current_thread()]

这种方式理论上是可行的,它最大的优点是消除了dict在每层函数中的传递问题,但是,每个函数获得std的代码有点丑。

有没有更简单的?

ThreadLocal应运而生,不用查找dict,ThreadLocal自动帮你做这件事:
import threading

local_school =threading.local()

def process_student():
    std =local_school.student

    print('Hello, %s (in %s)' % (std,threading.current_thread().name))

def process_thread(name):
    local_school.student = name

    process_student()

t1 =threading.Thread(target =process_thread,args =('Alice'),name ='thread_A')

t2 =threading.Thread(target =process_thread,args =('Bob'),name ='thread_B')

t1.start()

t2.start()

t1.join()

t2.join()

Hello, Alice (in Thread-A)
Hello, Bob (in Thread-B)

全局变量local_school就是一个ThreadLocal对象,每个thread都可以对它读写属性,但互不影响。你可以把Local_school看成是全局变量,但每个属性如Local_school.student都是线程的局部变量。可以任意读写而不互相干扰,也不用管理锁的问题,ThreadLocal内部会处理。

可以理解为全局变量local_school是一个dict,不但可以用local_school.student,还可以绑定其他属性,如local_school.teacher等。

ThreadLocal最常用的地方就是为每一个线程绑定一个数据库连接,HTTP请求,用户信息等。这样,一个线程的所有调用到的处理函数都可以非常方便的访问这些资源。


小结:
一个ThreadLocal变量虽然是全局变量,但每个线程只能读写自己线程的独立副本,互不影响。ThreadLocal解决了参数在一个线程中各个函数之间的传递问题。