常用的参数方程消参方法

一、消参方法

消参的常用方法有:代入消参法,加减消参法,乘除消参法,平方消参法。

二、方法例说

㊀代入消参法

如直线\(\left\{\begin{array}{l}{x=1+t①}\\{y=2-t②}\end{array}\right.(t为参数)\)

\(t=x-1\)代入②,得到\(y=2-(x-1)\)

\(x+y-3=0\),代入消参完成。

㊁加减消参法

依上例,两式相加,得到\(x+y-3=0\),加减消参完成。

㊂乘除消参法

  • 比如\(\begin{cases}x=t cos\theta①\\y=t sin\theta②\end{cases}(t为参数)\)

针对要作分母的\(cos\theta\)分类讨论如下:

\(cos\theta=0\)时,直线为\(x=0\)

\(cos\theta\neq 0\)时,由\(\cfrac{②}{①}\),两式相除得到\(y=tan\theta\cdot x\)

  • 再比如\(\begin{cases}y=k(x-2)\\y=\cfrac{1}{k}(x+2)\end{cases}(k为参数)\)

两式相乘,消去参数\(k\),得到\(y^2=x^2-4(y\neq 0)\)

㊃平方消参法

如圆的参数方法\(\left\{\begin{array}{l}{x=1+2cos\theta①}\\{y=2+2sin\theta②}\end{array}\right.(\theta为参数)\)

先变形为\(\left\{\begin{array}{l}{x-1=2cos\theta①}\\{y-2=2sin\theta②}\end{array}\right.(\theta为参数)\)

①②两式同时平方,再相加,得到

\((x-1)^2+(y-2)^2=4\),到此平方消参完成。

㊄组合法

如曲线的参数方程为\(\left\{\begin{array}{l}{x=2s^2①}\\{y=2\sqrt{2}s②}\end{array}\right.(s为参数)\)

  • 法1,使用代入消参法,由②得到\(s=\cfrac{y}{2\sqrt{2}}\)

代入①整理得到,\(y^2=4x\)

  • 法2,平方法+除法消参法,由\(\cfrac{②^2}{①}\),整理得到,\(y^2=4x\)

再如曲线的参数方程为\(\left\{\begin{array}{l}{x=t-\cfrac{1}{t}①}\\{y=t+\cfrac{1}{t}②}\end{array}\right.(t为参数)\)

分析:给①式平方得到,\(x^2=t^2+\cfrac{1}{t^2}-2③\)

给②式平方得到,\(y^2=t^2+\cfrac{1}{t^2}+2④\)

\(④-③\),得到\(y^2-x^2=4\),消参完成,

本题使用了平方消参法和加减消参法。

三、注意事项

  • 参数方程消参以后需要特别注意的是,消参前后的表达式要等价,这一点常常与我们学习的函数的值域有关。举例如下:

例1、 参数方程\(\left\{\begin{array}{l}{x=3t^2+2}\\{y=t^2-1}\end{array}\right.(0\leq t\leq 5)\)表示的曲线为______________.

分析:用带入法消掉参数\(t\),得到其普通方程为\(x=3(y+1)+2\),即\(x-3y-5=0\)。这是直线。

但是,参数\(t\)有范围,故\(x\)\(y\)都应该有范围。

比如,\(x=3t^2+3\in [2,77]\)

由于\(y=\cfrac{x-5}{3}\)是单调函数,故不需要再限制\(y\)的范围,

即表示的曲线为\(x-3y-5=0(2\leq x\leq 77)\),即为一条线段。

例2、曲线\(C\)的极坐标方程为\(\rho^2cos2\theta=4(\rho>0,\cfrac{3\pi}{4}<\theta<\cfrac{5\pi}{4})\),求其普通方程。

分析:由题目可知,\(\rho^2(cos^2\theta-sin^2\theta)=4\)

\(x^2-y^2=4\),即\(\cfrac{x^2}{4}-\cfrac{y^2}{4}=1\),等轴双曲线,有左右两支;

但是题目要求\(\cfrac{3\pi}{4}<\theta<\cfrac{5\pi}{4}\),则符合题目的只有双曲线的左支,

故其普通方程为\(x^2-y^2=4(x\leq -2)\)

说明:极坐标方程也存在等价问题。

例3、曲线\(C\)的参数方程为\(\begin{cases}y=k(x-2)\\y=\cfrac{1}{k}(x+2)\end{cases}(k为参数)\),求其普通方程。

分析:两式相乘,消去参数\(k\),得到\(y^2=x^2-4(y\neq 0)\),即\(x^2-y^2=4\)

那么转化前后,是否等价,该考虑什么?其实只需要考虑其上的特殊点。

\(x^2-y^2=4\)是焦点在\(x\)轴的等轴双曲线,顶点是\((\pm2,0)\)

\(y=0\),则\(x=2\)\(x=-2\),这不可能。故\(y\neq 0\)

故所求的普通方程为\(x^2-y^2=4(y\neq 0)\)

四、例题赏析

已知参数方程:\(\left\{\begin{array}{l}{x=(t+\cfrac{1}{t})sin\theta}\\{y=(t-\cfrac{1}{t})cos\theta}\end{array}\right.(t\neq 0)\)

(1)若\(t\)为常数,\(\theta\)为参数,判断方程表示什么曲线?

分析:观察参数\(\theta\)所处的位置和方程结构特征,我们可以考虑平方消参法。

\(\left\{\begin{array}{l}{x=(t+\cfrac{1}{t})sin\theta①}\\{y=(t-\cfrac{1}{t})cos\theta②}\end{array}\right.\)

\(1^{\circ}\)、当\(t\neq \pm1\)时,由①得到\(sin\theta=\cfrac{x}{t+\cfrac{1}{t}}\)

由②得到\(cos\theta=\cfrac{y}{t-\cfrac{1}{t}}\),平方相加得,

\(\cfrac{x^2}{(t+\cfrac{1}{t})^2}+\cfrac{y^2}{(t-\cfrac{1}{t})^2}=1\)

其表示的是中心在原点, 长轴长为\(2|t+\cfrac{1}{t}|\),短轴长为\(2|t-\cfrac{1}{t}|\)

焦点在\(x\)轴上的椭圆;

\(2^{\circ}\)、当\(t= \pm1\)时,此时\(y=0\)\(x=\pm 2sin\theta\),则\(x\in [-2,2]\)

其表示的是以\(A(-2,0)\)\(B(2,0)\)为端点的线段;

综上可知,

\(t\neq \pm1\)时,原方程表示焦点在\(x\)轴的椭圆;

\(t=\pm 1\)时,原方程表示以\(A(-2,0)\)\(B(2,0)\)为端点的线段;

(2)若\(\theta\)为常数,\(t\)为参数,方程表示什么曲线?

分析:观察参数\(\theta\)所处的位置和方程结构特征,我们可以考虑平方消参法。

\(\left\{\begin{array}{l}{x=(t+\cfrac{1}{t})sin\theta①}\\{y=(t-\cfrac{1}{t})cos\theta②}\end{array}\right.\)

\(1^{\circ}\)、当\(\theta\neq \cfrac{k\pi}{2}(k\in Z)\)时,由①得到\(\cfrac{x}{sin\theta}=t+\cfrac{1}{t}\)

由②得到\(\cfrac{y}{cos\theta}=t-\cfrac{1}{t}\),平方相减得到,

\(\cfrac{x^2}{sin^2\theta}-\cfrac{y^2}{cos^2\theta}=4\),即\(\cfrac{x^2}{4sin^2\theta}-\cfrac{y^2}{4cos^2\theta}=1\)

其表示的是中心在原点,实轴长为\(4|sin\theta|\),虚轴长为\(4|cos\theta|\),焦点在\(x\)轴上的双曲线;

\(2^{\circ}\)、当\(\theta=k\pi(k\in Z)\)时,\(x=0\),它表示\(y\)轴;

\(3^{\circ}\)、当\(\theta=k\pi+\cfrac{\pi}{2}(k\in Z)\)时,\(y=0\)\(x=\pm(t+\cfrac{1}{t})\)

\(t>0\)时,\(x=t+\cfrac{1}{t}\ge 2\),当\(t<0\)时,\(x=-(t+\cfrac{1}{t})\leq 2\)

\(|x|\ge 2\),方程\(y=0(|x|\ge 2)\)表示\(x\)轴上以\(A(-2,0)\)\(B(2,0)\)为端点的向左、向右的两条射线;

综上可知,

\(\theta\neq \cfrac{k\pi}{2}(k\in Z)\),方程表示焦点在\(x\)轴上的双曲线;

\(\theta=k\pi(k\in Z)\)时,\(x=0\),它表示\(y\)轴;

\(\theta=k\pi+\cfrac{\pi}{2}(k\in Z)\)时,方程表示\(x\)轴上以\(A(-2,0)\)\(B(2,0)\)为端点的向左、向右的两条射线;

转载于:https://www.cnblogs.com/wanghai0666/p/9683276.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值