参数方程消参法

前言

消参的常用方法有:代入消参法,加减消参法,乘除消参法,平方消参法[或变形后平方消参],组合消参法等。其实说穿了,就是采用一级运算[加减]或二级运算[乘除]或三级运算[乘方开方]或其组合使用;

方法例说

  • 代入消参法

引例如,直线 { x = 1 + t ① y = 2 − t ② ( t 为参数 ) \left\{\begin{array}{l}{x=1+t①}\\{y=2-t②}\end{array}\right.(t为参数) {x=1+ty=2t(t为参数)

t = x − 1 t=x-1 t=x1代入②,得到 y = 2 − ( x − 1 ) y=2-(x-1) y=2(x1)

x + y − 3 = 0 x+y-3=0 x+y3=0,代入消参完成。

  • 加减消参法

依上例,两式相加,得到 x + y − 3 = 0 x+y-3=0 x+y3=0,加减消参完成。

  • 乘除消参法

引例1如, { x = t c o s θ ① y = t s i n θ ② ( t 为参数 ) \begin{cases}x=t cos\theta①\\y=t sin\theta②\end{cases}(t为参数) {x=tcosθy=tsinθ(t为参数)

针对要作分母的 c o s θ cos\theta cosθ分类讨论如下:

c o s θ = 0 cos\theta=0 cosθ=0时,直线为 x = 0 x=0 x=0

c o s θ ≠ 0 cos\theta\neq 0 cosθ=0时,由 ② ① \cfrac{②}{①} ,两式相除得到 y = t a n θ ⋅ x y=tan\theta\cdot x y=tanθx

引例2如, { y = k ( x − 2 ) y = 1 k ( x + 2 ) ( k 为参数 ) \begin{cases}y=k(x-2)\\y=\cfrac{1}{k}(x+2)\end{cases}(k为参数) y=k(x2)y=k1(x+2)(k为参数)

两式相乘,消去参数 k k k,得到 y 2 = x 2 − 4 ( y ≠ 0 ) y^2=x^2-4(y\neq 0) y2=x24(y=0)1

  • 平方消参法

引例如,圆的参数方法 { x = 1 + 2 c o s θ ① y = 2 + 2 s i n θ ② ( θ 为参数 ) \left\{\begin{array}{l}{x=1+2cos\theta①}\\{y=2+2sin\theta②}\end{array}\right.(\theta为参数) {x=1+2cosθy=2+2sinθ(θ为参数)

先变形为 { x − 1 = 2 c o s θ ① y − 2 = 2 s i n θ ② ( θ 为参数 ) \left\{\begin{array}{l}{x-1=2cos\theta①}\\{y-2=2sin\theta②}\end{array}\right.(\theta为参数) {x1=2cosθy2=2sinθ(θ为参数)

①②两式同时平方,再相加,得到

( x − 1 ) 2 + ( y − 2 ) 2 = 4 (x-1)^2+(y-2)^2=4 (x1)2+(y2)2=4,到此平方消参完成。

  • 组合法

引例如,曲线的参数方程为 { x = 2 s 2 ① y = 2 2 s ② ( s 为参数 ) \left\{\begin{array}{l}{x=2s^2①}\\{y=2\sqrt{2}s②}\end{array}\right.(s为参数) {x=2s2y=22 s(s为参数)

  • 法1,使用代入消参法,由②得到 s = y 2 2 s=\cfrac{y}{2\sqrt{2}} s=22 y

代入①整理得到, y 2 = 4 x y^2=4x y2=4x

  • 法2,平方法+除法消参法,由 ② 2 ① \cfrac{②^2}{①} 2,整理得到, y 2 = 4 x y^2=4x y2=4x

再如曲线的参数方程为 { x = t − 1 t ① y = t + 1 t ② ( t 为参数 ) \left\{\begin{array}{l}{x=t-\cfrac{1}{t}①}\\{y=t+\cfrac{1}{t}②}\end{array}\right.(t为参数) x=tt1y=t+t1(t为参数)

分析:给①式平方得到, x 2 = t 2 + 1 t 2 − 2 ③ x^2=t^2+\cfrac{1}{t^2}-2③ x2=t2+t212③

给②式平方得到, y 2 = t 2 + 1 t 2 + 2 ④ y^2=t^2+\cfrac{1}{t^2}+2④ y2=t2+t21+2④

④ − ③ ④-③ ,得到 y 2 − x 2 = 4 y^2-x^2=4 y2x2=4,消参完成,

本题使用了平方消参法和加减消参法。

消参关系式

t ⋅ 1 t = 1 t\cdot \cfrac{1}{t}=1 tt1=1

( t + 1 t ) 2 − ( t − 1 t ) 2 = 4 (t+\cfrac{1}{t})^2-(t-\cfrac{1}{t})^2=4 (t+t1)2(tt1)2=4; 令 t ⇒ e t t\Rightarrow e^t tet,即得到 ④ 式;

( 2 t 1 + t 2 ) 2 + ( 1 − t 2 1 + t 2 ) 2 = 1 (\cfrac{2t}{1+t^2})^2+(\cfrac{1-t^2}{1+t^2})^2=1 (1+t22t)2+(1+t21t2)2=12

( e t + e − t ) 2 − ( e t − e − t ) 2 = 4 (e^t+e^{-t})^2-(e^t-e^{-t})^2=4 (et+et)2(etet)2=4

注意事项

  • 参数方程消参以后需要特别注意的是,消参前后的表达式要等价,这一点常常与我们学习的函数的值域有关。举例如下:

参数方程 { x = 3 t 2 + 2 y = t 2 − 1 ( 0 ≤ t ≤ 5 ) \left\{\begin{array}{l}{x=3t^2+2}\\{y=t^2-1}\end{array}\right.(0\leq t\leq 5) {x=3t2+2y=t21(0t5)表示的曲线为______________.

分析:用带入法消掉参数 t t t,得到其普通方程为 x = 3 ( y + 1 ) + 2 x=3(y+1)+2 x=3(y+1)+2,即 x − 3 y − 5 = 0 x-3y-5=0 x3y5=0。这是直线。

但是,参数 t t t有范围,故 x x x y y y都应该有范围。

比如, x = 3 t 2 + 2 ∈ [ 2 , 77 ] x=3t^2+2\in [2,77] x=3t2+2[277],由于 y = x − 5 3 y=\cfrac{x-5}{3} y=3x5是单调函数,故不需要再限制 y y y的范围,

即表示的曲线为 x − 3 y − 5 = 0 ( 2 ⩽ x ⩽ 77 ) x-3y-5=0(2\leqslant x\leqslant 77) x3y5=0(2x77),即为一条线段。

曲线 C C C的极坐标方程为 ρ 2 c o s 2 θ = 4 ( ρ > 0 , 3 π 4 < θ < 5 π 4 ) \rho^2cos2\theta=4(\rho>0,\cfrac{3\pi}{4}<\theta<\cfrac{5\pi}{4}) ρ2cos2θ=4(ρ>043π<θ<45π),求其普通方程。

分析:由题目可知, ρ 2 ( c o s 2 θ − s i n 2 θ ) = 4 \rho^2(cos^2\theta-sin^2\theta)=4 ρ2(cos2θsin2θ)=4

x 2 − y 2 = 4 x^2-y^2=4 x2y2=4,即 x 2 4 − y 2 4 = 1 \cfrac{x^2}{4}-\cfrac{y^2}{4}=1 4x24y2=1,等轴双曲线,有左右两支;

但是题目要求 3 π 4 < θ < 5 π 4 \cfrac{3\pi}{4}<\theta<\cfrac{5\pi}{4} 43π<θ<45π,则符合题目的只有双曲线的左支,

故其普通方程为 x 2 − y 2 = 4 ( x ≤ − 2 ) x^2-y^2=4(x\leq -2) x2y2=4(x2)

说明:极坐标方程也存在等价问题。

曲线 C C C的参数方程为 { y = k ( x − 2 ) y = 1 k ( x + 2 ) ( k 为参数 ) \begin{cases}y=k(x-2)\\y=\cfrac{1}{k}(x+2)\end{cases}(k为参数) y=k(x2)y=k1(x+2)(k为参数),求其普通方程。

分析:两式相乘,消去参数 k k k,得到 y 2 = x 2 − 4 y^2=x^2-4 y2=x24,即 x 2 − y 2 = 4 x^2-y^2=4 x2y2=4

那么转化前后,是否等价,该考虑什么?其实只需要考虑其上的特殊点。

x 2 − y 2 = 4 x^2-y^2=4 x2y2=4是焦点在 x x x轴的等轴双曲线,顶点是 ( ± 2 , 0 ) (\pm2,0) (±20)

y = 0 y=0 y=0,则 x = 2 x=2 x=2 x = − 2 x=-2 x=2,这不可能。故 y ≠ 0 y\neq 0 y=0

故所求的普通方程为 x 2 − y 2 = 4 ( y ≠ 0 ) x^2-y^2=4(y\neq 0) x2y2=4(y=0)

例题赏析

【源题见抛物线习题】已知参数方程为 { x = p ( k 2 + 1 k 2 ) y = p ( k − 1 k ) \left\{\begin{array}{l}{x=p(k^2+\cfrac{1}{k^2})}\\{y=p(k-\cfrac{1}{k})}\end{array}\right. x=p(k2+k21)y=p(kk1),则其普通方程是什么。

分析:由于 k 2 + 1 k 2 = ( k − 1 k ) 2 − 2 k^2+\cfrac{1}{k^2}=(k-\cfrac{1}{k})^2-2 k2+k21=(kk1)22,利用此公式消参,得到

x p = ( y p ) 2 + 2 \cfrac{x}{p}=(\cfrac{y}{p})^2+2 px=(py)2+2,即 y 2 = p x − 2 p 2 y^2=px-2p^2 y2=px2p2

即中点 P P P的轨迹方程为 y 2 = p x − 2 p 2 y^2=px-2p^2 y2=px2p2

【源题见求轨迹方程】已知参数方程 { x = 3 1 + k 2 ① y = 3 k 1 + k 2 ② ( ∣ k ∣ < 2 5 5 ) \left\{\begin{array}{l}{x=\frac{3}{1+k^2}①}\\{y=\frac{3k}{1+k^2}②}\end{array}\right.(|k|< \frac{2\sqrt{5}}{5}) {x=1+k23y=1+k23k(k<525 ),消参求其普通方程;

(2)、求线段 A B AB AB的中点 M M M的轨迹 C C C的方程。

分析【法1】:设直线 A B AB AB的方程为 y = k x y=kx y=kx,点 A ( x 1 , y 1 ) A(x_1,y_1) A(x1y1) B ( x 2 , y 2 ) B(x_2,y_2) B(x2y2)

与圆 C 1 C_1 C1联立,消 y y y得到, ( 1 + k 2 ) x 2 − 6 x + 5 = 0 (1+k^2)x^2-6x+5=0 (1+k2)x26x+5=0

Δ = ( − 6 ) 2 − 4 × 5 ( 1 + k 2 ) > 0 \Delta =(-6)^2-4\times 5(1+k^2)>0 Δ=(6)24×5(1+k2)>0,可得 k 2 < 4 5 k^2<\cfrac{4}{5} k2<54

由韦达定理可得, x 1 + x 2 = 6 1 + k 2 x_1+x_2=\cfrac{6}{1+k^2} x1+x2=1+k26

则线段 A B AB AB的中点 M M M的轨迹 C C C的参数方程为 { x = 3 1 + k 2 ① y = 3 k 1 + k 2 ② \left\{\begin{array}{l}{x=\cfrac{3}{1+k^2}①}\\{y=\cfrac{3k}{1+k^2}②}\end{array}\right. x=1+k23y=1+k23k,其中 − 2 5 5 < k < 2 5 5 -\cfrac{2\sqrt{5}}{5}<k<\cfrac{2\sqrt{5}}{5} 525 <k<525

如何消参数呢?两式相比,得到 y = k x y=kx y=kx,即 k = y x k=\cfrac{y}{x} k=xy

代入①变形整理后得到, ( x − 3 2 ) 2 + y 2 = 9 4 (x-\cfrac{3}{2})^2+y^2=\cfrac{9}{4} (x23)2+y2=49

又由于 k 2 < 4 5 k^2<\cfrac{4}{5} k2<54,得到 5 3 < x ≤ 3 \cfrac{5}{3}<x\leq 3 35<x3

故线段 A B AB AB的中点 M M M的轨迹 C C C的方程为 ( x − 3 2 ) 2 + y 2 = 9 4 (x-\cfrac{3}{2})^2+y^2=\cfrac{9}{4} (x23)2+y2=49,其中 5 3 < x ≤ 3 \cfrac{5}{3}<x\leq 3 35<x3

分析:两式相除,得到 y = t x y=tx y=tx,即 t = y x t=\frac{y}{x} t=xy,代入①式,

得到 x ( 1 + y 2 x 2 ) = 3 x(1+\frac{y^2}{x^2})=3 x(1+x2y2)=3,两边乘以 x x x得到 x 2 ( 1 + y 2 x 2 ) = 3 x x^2(1+\frac{y^2}{x^2})=3x x2(1+x2y2)=3x

x 2 + y 2 = 3 x x^2+y^2=3x x2+y2=3x, ( 5 3 < x ⩽ 3 ) (\frac{5}{3}<x\leqslant 3) (35<x3)

已知参数方程 { x = 1 − t 2 1 + t 2 ① y = 4 t 1 + t 2 ② ( t 为参数 ) \left\{\begin{array}{l}{x=\frac{1-t^2}{1+t^2}①}\\{y=\frac{4t}{1+t^2}②}\end{array}\right.(t为参数) {x=1+t21t2y=1+t24t(t为参数),消参求其普通方程;

分析:给①式平方得到, x 2 = ( 1 − t 2 ) 2 ( 1 + t 2 ) 2 = t 4 − 2 t 2 + 1 t 4 + 2 t 2 + 1 ③ x^2=\cfrac{(1-t^2)^2}{(1+t^2)^2}=\cfrac{t^4-2t^2+1}{t^4+2t^2+1}③ x2=(1+t2)2(1t2)2=t4+2t2+1t42t2+1

给②式平方得到, y 2 = ( 4 t ) 2 ( 1 + t 2 ) 2 = 16 t 2 t 4 + 2 t 2 + 1 ④ y^2=\cfrac{(4t)^2}{(1+t^2)^2}=\cfrac{16t^2}{t^4+2t^2+1}④ y2=(1+t2)2(4t)2=t4+2t2+116t2

为消掉参数,需要给④式两边同除以 4 4 4得到, y 2 4 = 4 t 2 t 4 + 2 t 2 + 1 ⑤ \cfrac{y^2}{4}=\cfrac{4t^2}{t^4+2t^2+1}⑤ 4y2=t4+2t2+14t2

③+⑤得到, x 2 + y 2 4 = t 4 + 2 t 2 + 1 t 4 + 2 t 2 + 1 = 1 x^2+\cfrac{y^2}{4}=\cfrac{t^4+2t^2+1}{t^4+2t^2+1}=1 x2+4y2=t4+2t2+1t4+2t2+1=1.

故所求的普通方法为 x 2 + y 2 4 = 1 x^2+\cfrac{y^2}{4}=1 x2+4y2=1.

解后反思:平方后,调整系数再相加,利用分式的和为常数,可以消掉参数;

已知参数方程: { x = s i n θ + c o s θ ① y = s i n θ − c o s θ ② \left\{\begin{array}{l}{x=sin\theta+cos\theta①}\\{y=sin\theta-cos\theta②}\end{array}\right. {x=sinθ+cosθy=sinθcosθ ( θ 为参数 ) (\theta为参数) (θ为参数),求其普通方程。

法1:利用平方法+和差法, ① 2 + ② 2 ①^2+②^2 2+2得到, x 2 + y 2 = 2 x^2+y^2=2 x2+y2=2;即其普通方程为 x 2 + y 2 = 2 x^2+y^2=2 x2+y2=2

法2:利用 s i n 2 θ + c o s 2 θ = 1 sin^2\theta+cos^2\theta=1 sin2θ+cos2θ=1消参,由已知方程反解得到,

s i n θ = x + y 2 sin\theta=\cfrac{x+y}{2} sinθ=2x+y c o s θ = x − y 2 cos\theta=\cfrac{x-y}{2} cosθ=2xy

两式平方得到, ( x + y 2 ) 2 + ( x − y 2 ) 2 = 1 (\cfrac{x+y}{2})^2+(\cfrac{x-y}{2})^2=1 (2x+y)2+(2xy)2=1

整理得到, x 2 + y 2 = 2 x^2+y^2=2 x2+y2=2

解后反思:消参的途径可能不唯一;

已知曲线 C C C的参数方程: { x = a + 1 2 a ① y = a − 1 2 a ② \left\{\begin{array}{l}{x=a+\cfrac{1}{2a}①}\\{y=a-\cfrac{1}{2a}②}\end{array}\right. x=a+2a1y=a2a1 ( a 为参数 ) (a为参数) (a为参数),求其普通方程。

分析:给①式的两边平方得到, x 2 = a 2 + 1 + 1 4 a 2 ③ x^2=a^2+1+\cfrac{1}{4a^2}③ x2=a2+1+4a21

给②式的两边平方得到, y 2 = a 2 − 1 + 1 4 a 2 ④ y^2=a^2-1+\cfrac{1}{4a^2}④ y2=a21+4a21

两式相减,③-④得到, x 2 − y 2 = 2 x^2-y^2=2 x2y2=2

【2018 ⋅ \cdot 全国卷Ⅱ第22题】在直角坐标系 x O y xOy xOy 中, 曲线 C C C 的参数方程为 { x = 2 cos ⁡ θ y = 4 sin ⁡ θ \left\{\begin{array}{l}x=2\cos\theta\\y=4\sin \theta\end{array}\right. {x=2cosθy=4sinθ ( θ \theta θ 为参数), 直线 l l l 的参数方程为 { x = 1 + t cos ⁡ α y = 2 + t sin ⁡ α \left\{\begin{array}{l}x=1+t\cos\alpha\\y=2+t\sin \alpha\end{array}\right. {x=1+tcosαy=2+tsinα ( t t t 为参数).

(1). 求 C C C l l l 的直角坐标方程;

解: 曲线 C C C 的直角坐标方程为 x 2 4 + y 2 16 = 1 \cfrac{x^{2}}{4}+\cfrac{y^{2}}{16}=1 4x2+16y2=1.

cos ⁡ α ≠ 0 \cos\alpha\neq 0 cosα=0 时, l l l 的直角坐标方程为 y = tan ⁡ α ⋅ x + 2 − tan ⁡ α y=\tan\alpha\cdot x+2-\tan\alpha y=tanαx+2tanα当我们变形得到, x x x − - 1 1 1 = = = t t t cos ⁡ α \cos\alpha cosα y y y − - 2 2 2 = = = t t t sin ⁡ α \sin\alpha sinα,要消参肯定需要代入或者相除,自然会产生分母,这时候就需要考虑分母是否为零的情形,故要做分类讨论

cos ⁡ α = 0 \cos\alpha=0 cosα=0 时, l l l 的直角坐标方程为 x = 1 x=1 x=1.

(2). 若曲线 C C C 截直线 l l l 所得线段的中点坐标为 ( 1 , 2 ) (1,2) (1,2), 求 l l l 的斜率 。

解:将 l l l 的参数方程代入 C C C 的直角坐标方程 x 2 4 + y 2 16 = 1 \cfrac{x^{2}}{4}+\cfrac{y^{2}}{16}=1 4x2+16y2=1

整理得关于 t t t 的方程 ( 1 + 3 cos ⁡ 2 α ) t 2 + \left(1+3 \cos ^{2} \alpha\right) t^{2}+ (1+3cos2α)t2+ 4 ( 2 cos ⁡ α + sin ⁡ α ) t − 8 = 0 4(2 \cos \alpha+\sin \alpha) t-8=0 4(2cosα+sinα)t8=0. ①

因为曲线 C C C 截直线 l l l 所得线段的中点 ( 1 , 2 ) (1,2) (1,2) C C C 内, 所以 ① 有两个解,

设为 t 1 t_{1} t1 t 2 t_{2} t2, 则 t 1 + t 2 = 0 t_{1}+t_{2}=0 t1+t2=0.

又由(1)得 t 1 + t 2 = − 4 ( 2 cos ⁡ α + sin ⁡ α ) 1 + 3 cos ⁡ 2 α t_{1}+t_{2}=-\cfrac{4(2\cos\alpha+\sin\alpha)}{1+3\cos^{2}\alpha} t1+t2=1+3cos2α4(2cosα+sinα)

2 cos ⁡ α + sin ⁡ α = 0 2\cos\alpha+\sin\alpha=0 2cosα+sinα=0, 于是直线 l l l 的斜率 k = k= k= tan ⁡ α = − 2 \tan\alpha=-2 tanα=2

法2:点差法,设曲线 C C C 与直线 l l l 的交点为点 A ( x 1 , y 1 ) A(x_1,y_1) A(x1,y1) ,点 B ( x 2 , y 2 ) B(x_2,y_2) B(x2,y2)

由于这两个点都在曲线 C C C 上,故满足曲线方程,

x 1 2 4 + y 1 2 16 = 1 \cfrac{x_1^2}{4}+\cfrac{y_1^2}{16}=1 4x12+16y12=1①, x 2 2 4 + y 2 2 16 = 1 \cfrac{x_2^2}{4}+\cfrac{y_2^2}{16}=1 4x22+16y22=1②,

①-② 得到, 4 ( x 1 + x 2 ) ( x 1 − x 2 ) + ( y 1 + y 2 ) ( y 1 − y 2 ) = 0 4(x_1+x_2)(x_1-x_2)+(y_1+y_2)(y_1-y_2)=0 4(x1+x2)(x1x2)+(y1+y2)(y1y2)=0

整理得到, − y 1 − y 2 x 1 − x 2 = 4 × x 1 + x 2 y 1 + y 2 -\cfrac{y_1-y_2}{x_1-x_2}=4\times \cfrac{x_1+x_2}{y_1+y_2} x1x2y1y2=4×y1+y2x1+x2

又由于 A B AB AB 的中点坐标为 ( 1 , 2 ) (1,2) (1,2),故 x 1 + x 2 = 2 x_1+x_2=2 x1+x2=2 y 1 + y 2 = 4 y_1+y_2=4 y1+y2=4

− y 1 − y 2 x 1 − x 2 = 4 × x 1 + x 2 y 1 + y 2 -\cfrac{y_1-y_2}{x_1-x_2}=4\times \cfrac{x_1+x_2}{y_1+y_2} x1x2y1y2=4×y1+y2x1+x2 = 4 × 2 4 = 2 =4\times \cfrac{2}{4}=2 =4×42=2

− k = 2 -k=2 k=2,故 k = − 2 k=-2 k=2 .

【2022届高三数学三轮模拟冲刺用题】在直角坐标系 x O y xOy xOy 中,曲线 C 1 C_1 C1 的参数方程为 { x = 2 2 t 1 + 2 t 2 y = 3 + 2 t 2 1 + 2 t 2 \left\{\begin{array}{l}x=\cfrac{2\sqrt{2}t}{1+2t^2}\\y=\cfrac{3+2t^2}{1+2t^2}\end{array}\right. x=1+2t222 ty=1+2t23+2t2,( t t t为参数),在以坐标原点为极点, x x x 轴正半轴为极轴的极坐标中,曲线 C 2 : C_2: C2: ρ sin ⁡ θ + 2 ρ cos ⁡ θ − a = 0 \rho\sin\theta+2\rho\cos\theta-a=0 ρsinθ+2ρcosθa=0,射线 C 3 : C_3: C3: θ = α \theta=\alpha θ=α( ρ ⩾ 0 \rho\geqslant0 ρ0),其中 α ∈ ( 0 , π 2 ) \alpha\in (0,\cfrac{\pi}{2}) α(0,2π),且满足 tan ⁡ α = 2 \tan\alpha=2 tanα=2

(1). 求曲线 C 1 C_1 C1 的极坐标方程;

解析:本题目依托 ( 2 t 1 + t 2 ) 2 + ( 1 − t 2 1 + t 2 ) 2 = 1 (\cfrac{2t}{1+t^2})^2+(\cfrac{1-t^2}{1+t^2})^2=1 (1+t22t)2+(1+t21t2)2=1 来消参当然,本题目也可以利用代入消元法,由 ② 式反解出 t 2 t^2 t2,代入 ① 式,在 t t t 处使用 ± \pm ± 即可,然后两边同时平方整理即可消去参数 t t t,只不过运算很复杂。

由于 y = 3 + 2 t 2 1 + 2 t 2 = 2 + 1 − 2 t 2 1 + 2 t 2 y=\cfrac{3+2t^2}{1+2t^2}=2+\cfrac{1-2t^2}{1+2t^2} y=1+2t23+2t2=2+1+2t212t2,则有 y − 2 = 1 − 2 t 2 1 + 2 t 2 y-2=\cfrac{1-2t^2}{1+2t^2} y2=1+2t212t2

所以 x 2 + ( y − 2 ) 2 = ( 2 2 t 1 + 2 t 2 ) 2 + ( 1 − 2 t 2 1 + 2 t 2 ) 2 = 1 x^2+(y-2)^2=(\cfrac{2\sqrt{2}t}{1+2t^2})^2+(\cfrac{1-2t^2}{1+2t^2})^2=1 x2+(y2)2=(1+2t222 t)2+(1+2t212t2)2=1

因为 C 1 C_1 C1 可化为 x 2 + y 2 − 4 y + 3 = 0 x^2+y^2-4y+3=0 x2+y24y+3=0( y ≠ 1 y\neq1 y=1),所以曲线 C 1 C_1 C1 的极坐标方程为 ρ 2 − 4 ρ sin ⁡ θ + 3 = 0 \rho^2-4\rho\sin\theta+3=0 ρ24ρsinθ+3=0( ρ ≠ 1 \rho\neq1 ρ=1)。

(2). 曲线 C 3 C_3 C3 与曲线 C 1 C_1 C1 交于 A A A B B B 两点,与曲线 C 2 C_2 C2 交于点 C C C ,若 ∣ O C ∣ = 15 16 ( ∣ O A ∣ + ∣ O B ∣ ) |OC|=\cfrac{15}{16}(|OA|+|OB|) OC=1615(OA+OB),求 a a a 的值。

解析:由于曲线 C 3 C_3 C3 与曲线 C 1 C_1 C1 交于 A A A B B B 两点,则点 A A A B B B 同时满足两条曲线的方程,

A ( ρ A , θ ) A(\rho_{_A},\theta) A(ρA,θ) B ( ρ B , θ ) B(\rho_{_B},\theta) B(ρB,θ) 故联立得到 { θ = α ρ 2 − 4 ρ sin ⁡ θ + 3 = 0 \left\{\begin{array}{l}\theta=\alpha\\\rho^2-4\rho\sin\theta+3=0\end{array}\right. {θ=αρ24ρsinθ+3=0

θ = α \theta=\alpha θ=α 代入消元 θ \theta θ ,得到 ρ 2 − 4 ρ sin ⁡ α + 3 = 0 \rho^2-4\rho\sin\alpha+3=0 ρ24ρsinα+3=0

又由于 tan ⁡ α = 2 \tan\alpha=2 tanα=2,则可知 sin ⁡ α = 2 5 5 \sin\alpha=\cfrac{2\sqrt{5}}{5} sinα=525 ,代入上式得到, ρ 2 − 8 5 5 ρ + 3 = 0 \rho^2-\cfrac{8\sqrt{5}}{5}\rho+3=0 ρ2585 ρ+3=0

又由上可知, ρ A \rho_{_A} ρA ρ B \rho_{_B} ρB 是方程的两个根,故有 ∣ O A ∣ + ∣ O B ∣ = ρ A + ρ B = 8 5 5 |OA|+|OB|=\rho_{_A}+\rho_{_B}=\cfrac{8\sqrt{5}}{5} OA+OB=ρA+ρB=585

故有 ∣ O C ∣ = 15 16 ( ∣ O A ∣ + ∣ O B ∣ ) = 15 16 × 8 5 5 = 3 5 2 |OC|=\cfrac{15}{16}(|OA|+|OB|)=\cfrac{15}{16}\times \cfrac{8\sqrt{5}}{5}=\cfrac{3\sqrt{5}}{2} OC=1615(OA+OB)=1615×585 =235 .

同理,如图所示,曲线 C 3 C_3 C3 与曲线 C 2 C_2 C2 交于点 C ( ρ C , θ ) C(\rho_{_C},\theta) C(ρC,θ) ,则点 C C C 同时满足两条曲线的方程,

联立得到 { θ = α ρ sin ⁡ θ + 2 ρ cos ⁡ θ − a = 0 \left\{\begin{array}{l}\theta=\alpha\\\rho\sin\theta+2\rho\cos\theta-a=0\end{array}\right. {θ=αρsinθ+2ρcosθa=0 ,将 θ = α \theta=\alpha θ=α 代入消元 θ \theta θ

得到 ρ sin ⁡ α + 2 ρ cos ⁡ α − a = 0 \rho\sin\alpha+2\rho\cos\alpha-a=0 ρsinα+2ρcosαa=0,由 tan ⁡ α = 2 \tan\alpha=2 tanα=2,则可知 sin ⁡ α = 2 5 5 \sin\alpha=\cfrac{2\sqrt{5}}{5} sinα=525 ,且 cos ⁡ α = 5 5 \cos\alpha=\cfrac{\sqrt{5}}{5} cosα=55

代入整理得到, ρ × 2 5 5 + ρ × 2 5 5 − a = 0 \rho\times \cfrac{2\sqrt{5}}{5}+\rho\times \cfrac{2\sqrt{5}}{5}-a=0 ρ×525 +ρ×525 a=0,即 ρ = a 4 5 5 = 5 a 4 \rho=\cfrac{a}{\frac{4\sqrt{5}}{5}}=\cfrac{\sqrt{5}a}{4} ρ=545 a=45 a

ρ C = ∣ O C ∣ = 5 a 4 \rho_{_{C}}=|OC|=\cfrac{\sqrt{5}a}{4} ρC=OC=45 a, 由 ∣ O C ∣ = 3 5 2 = 5 a 4 |OC|=\cfrac{3\sqrt{5}}{2}=\cfrac{\sqrt{5}a}{4} OC=235 =45 a,解得 a = 6 a=6 a=6 .


  1. 由于 k ≠ 0 k\neq 0 k=0,当 y = 0 y=0 y=0时,需要 x = 2 x=2 x=2 x = − 2 x=-2 x=2,这是不可能的,故 y ≠ 0 y\neq 0 y=0↩︎

  2. 其一,本消参关系式,其实与三角函数中的万能公式有关, sin ⁡ θ = 2 tan ⁡ θ 2 1 + tan ⁡ 2 θ 2 \sin\theta=\cfrac{2\tan\frac{\theta}{2}}{1+\tan^2\frac{\theta}{2}} sinθ=1+tan22θ2tan2θ cos ⁡ θ = 1 − tan ⁡ 2 θ 2 1 + tan ⁡ 2 θ 2 \cos\theta=\cfrac{1-\tan^2\frac{\theta}{2}}{1+\tan^2\frac{\theta}{2}} cosθ=1+tan22θ1tan22θ tan ⁡ θ = 2 tan ⁡ θ 2 1 − tan ⁡ 2 θ 2 \tan\theta=\cfrac{2\tan\frac{\theta}{2}}{1-\tan^2\frac{\theta}{2}} tanθ=1tan22θ2tan2θ,其中 θ ≠ 2 k π + π \theta\neq 2k\pi+\pi θ=2+π,且 θ ≠ k π + π 2 \theta\neq k\pi+\cfrac{\pi}{2} θ=+2π k ∈ Z k\in Z kZ
    其二,给上述公式中的 t t t 赋值,令 t = 2 n t=\sqrt{2}n t=2 n,则可以得到形式上看似不一样的消参关系式,
    ( 2 2 n 1 + 2 n 2 ) 2 + ( 1 − 2 n 2 1 + 2 n 2 ) 2 = 1 (\cfrac{2\sqrt{2}n}{1+2n^2})^2+(\cfrac{1-2n^2}{1+2n^2})^2=1 (1+2n222 n)2+(1+2n212n2)2=1
    这样我们就容易理解 t ⇒ 2 t t\Rightarrow \sqrt{2}t t2 t t ⇒ 3 t t\Rightarrow \sqrt{3}t t3 t,则
    ( 2 2 t 1 + 2 t 2 ) 2 + ( 1 − 2 t 2 1 + 2 t 2 ) 2 = 1 (\cfrac{2\sqrt{2}t}{1+2t^2})^2+(\cfrac{1-2t^2}{1+2t^2})^2=1 (1+2t222 t)2+(1+2t212t2)2=1 ( 2 3 t 1 + 3 t 2 ) 2 + ( 1 − 3 t 2 1 + 3 t 2 ) 2 = 1 (\cfrac{2\sqrt{3}t}{1+3t^2})^2+(\cfrac{1-3t^2}{1+3t^2})^2=1 (1+3t223 t)2+(1+3t213t2)2=1↩︎

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海之恋2068

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值