sparse_softmax_cross_entropy_with_logits

sparse_softmax_cross_entropy_with_logits

原创文章,请勿转载!!!

定义

sparse_softmax_cross_entropy_with_logits(_sentinel=None,  labels=None, logits=None, name=None):
                                           

说明

此函数大致与tf_nn_softmax_cross_entropy_with_logits的计算方式相同,
适用于每个类别相互独立且排斥的情况,一幅图只能属于一类,而不能同时包含一条狗和一只大象

但是在对于labels的处理上有不同之处,labels从shape来说此函数要求shape为[batch_size],
labels[i]是[0,num_classes)的一个索引, type为int32或int64,即labels限定了是一个一阶tensor,
并且取值范围只能在分类数之内,表示一个对象只能属于一个类别

参数

_sentinel:本质上是不用的参数,不用填

logits:shape为[batch_size,num_classes],type为float32或float64

name:操作的名字,可填可不填

示例代码

import tensorflow as tf

input_data = tf.Variable([[0.2, 0.1, 0.9], [0.3, 0.4, 0.6]], dtype=tf.float32)
output = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=input_data, labels=[0, 2])
with tf.Session() as sess:
    init = tf.global_variables_initializer()
    sess.run(init)
    print(sess.run(output))
# [ 1.36573195  0.93983102]

转载于:https://www.cnblogs.com/cloud-ken/p/7435660.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值