权力的游戏第七季/全集Game of Thrones迅雷下载

艾美及金球奖获奖HBO原创剧集《权力的游戏》第七季将于2016年夏天晚些时候开拍。新的一季共有七集,主要拍摄地为北爱尔兰,部分镜头也将在西班牙和冰岛取景。上映时间预计将略有推迟,至2017年夏季。

HBO公布《权力的游戏》第七季最新主演人选,英国老牌影星吉姆·布劳德本特即将加盟,扮演“重要角色”。关于该角色的细节,HBO方面并未透露太多信息。不少剧迷推测,由于山姆在第六季结束时来到七国大学士们的枢纽机构学城,布劳德本特可能将扮演一位德高望重的大学士,对山姆的故事线制造重要影响。

第六季的大结局透过三眼乌鸦的视角披露了琼恩·雪诺父母的真实身份,他是奈德·史塔克的妹妹与雷加·坦格利安的私生子,这就意味着雷加的妹妹、“龙妈”丹莉妮斯·坦格利安其实是雪诺的亲姑姑。

伴随着囧雪、龙妈、瑟曦等主角的画外音,维斯特洛大陆主势力的图腾陆续出现在这款风格抽象的视频中。相互撕扯的图腾动物预示各大家族争夺王权的惨烈战争,“然而只有一场战争值得去打。最伟大的战役,已经来临”——雪诺话音刚落,夜王冰蓝的眼眸瞬间出现,淹没了碎裂的族徽图腾,仿佛看透了七王相争的无限贪婪与欲望。长城以南的国土即将面对异鬼大军终极考验。

第七季篇幅从常规的10集缩减到仅有7集。由于第七季剧情涉及大量冬季场景,剧组为了等待“凛冬”而把开机时间推迟到了秋冬季节,下一季的播出时间也由往年的春季档顺延到2017-7-16播出。

相关推荐:《权力的游戏第一季》《权力的游戏第二季》《权力的游戏第三季》《权力的游戏第四季》《权力的游戏第五季》《权力的游戏第六季》《权力的游戏第七季
播出:HBO 类 型:战争/剧情/魔幻/古装/史诗
地区:美国 制作公司:HBO
语言:英语 首播: 2017-07-16(美国)
英文:Game of Thrones 又名: 冰与火之歌:权力的游戏 / 王座游戏
别名:冰与火之歌 / 权力的游戏 / 王座游戏
主演:杰森·莫摩亚 / 伊恩·格雷 / 马克·艾迪 / 艾米莉亚·克拉克 / 莲娜·赫迪
高清美剧全集迅雷下载地址-本季集数:7

 点击下载一二三四五六七集

分类:  美剧电影

本文转自快乐就好博客园博客,原文链接:http://www.cnblogs.com/happyday56/p/7117098.html,如需转载请自行联系原作者
【资源说明】 1.项目代码功能经验证ok,确保稳定可靠运行。欢迎下载使用!在使用过程中,如有问题或建议,请及时私信沟通。 2.主要针对各个计算机相关专业,包括计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网等领域的在校学生、专业教师或企业员工使用。 3.项目具有丰富的拓展空间,不仅可作为入门进阶,也可直接作为毕设、课程设计、大作业、初期项目立项演示等用途。 4.当然也鼓励大家基于此进行二次开发。 5.期待你能在项目中找到乐趣和灵感,也欢迎你的分享和反馈! 本文介绍了基于QEM(Quadric Error Metrics,二次误差度量)的优化网格简化算法的C和C++实现源码及其相关文档。这一算法主要应用于计算机图形学领域,用于优化三维模型的多边形数量,使之在保持原有模型特征的前提下实现简化。简化的目的是为了提高渲染速度,减少计算资源消耗,以及便于网络传输等。 本项目的核心是网格简化算法的实现,而QEM作为该算法的核心,是一种衡量简化误差的数学方法。通过计算每个顶点的二次误差矩阵来评估简化操作的误差,并以此来指导网格简化过程。QEM算法因其高效性和准确性在计算机图形学中广泛应用,尤其在实时渲染和三维打印领域。 项目代码包含C和C++两种语言版本,这意味着它可以在多种开发环境中运行,增加了其适用范围。对于计算机相关专业的学生、教师和行业从业者来说,这个项目提供了丰富的学习和实践机会。无论是作为学习编程的入门材料,还是作为深入研究计算机图形学的项目,该项目都具有实用价值。 此外,项目包含的论文文档为理解网格简化算法提供了理论基础。论文详细介绍了QEM算法的原理、实施步骤以及与其他算法的对比分析。这不仅有助于加深对算法的理解,也为那些希望将算法应用于自己研究领域的人员提供了参考资料。 资源说明文档强调了项目的稳定性和可靠性,并鼓励用户在使用过程中提出问题或建议,以便不断地优化和完善项目。文档还提醒用户注意查看,以获取使用该项目的所有必要信息。 项目的文件名称列表中包含了加水印的论文文档、资源说明文件和实际的项目代码目录,后者位于名为Mesh-Simplification-master的目录下。用户可以将这些资源用于多种教学和研究目的,包括课程设计、毕业设计、项目立项演示等。 这个项目是一个宝贵的资源,它不仅提供了一个成熟的技术实现,而且为进一步的研究和学习提供了坚实的基础。它鼓励用户探索和扩展,以期在计算机图形学领域中取得更深入的研究成果。
内容概要:本文详细介绍了利用改进粒子群算法(PSO)进行混合储能系统(如电池与超级电容组合)容量优化的方法。文中首先指出了传统PSO易陷入局部最优的问题,并提出通过非线性衰减惯性权重、引入混沌因子和突变操作等方法来改进算法性能。随后,作者展示了具体的Python代码实现,包括粒子更新策略、适应度函数设计以及边界处理等方面的内容。适应度函数不仅考虑了设备的成本,还加入了对设备寿命和功率调节失败率的考量,确保优化结果的实际可行性。实验结果显示,在风光发电系统的应用场景中,改进后的PSO能够在较短时间内找到接近全局最优解的储能配置方案,相比传统方法降低了系统总成本并提高了循环寿命。 适合人群:从事电力系统、新能源技术研究的专业人士,尤其是对储能系统优化感兴趣的科研工作者和技术开发者。 使用场景及目标:适用于需要对混合储能系统进行容量优化的场合,旨在提高储能系统的经济效益和使用寿命,同时保证供电稳定性。通过学习本文提供的理论知识和代码实例,读者能够掌握改进粒子群算法的应用技巧,从而应用于实际工程项目中。 其他说明:文中提到的所有代码均为Python实现,且已在GitHub上提供完整的源代码链接(尽管文中给出的是虚拟地址)。此外,作者还计划将改进的PSO与其他优化算法相结合,进一步提升求解复杂问题的能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值