机器学习(andrew ng)第三课

 

局部线性加权回归

 

假如数据分布在上面的曲线中,我们用一条直线肯定无法进行拟合。

假如我们想知道坐标为x对应的值,那么我们就可以在两条红线中间进行线性拟合,就是假设两条竖直红线之间的部分数据是线性的。这就是局部线性回归。

 

在传统的线性回归中,我们的最小化目标函数和输出是这样的:

在局部线性回归中,我们的最小化目标函数和输出是这样的:

注意,这里多了一个w,

这个多加的参数非常有意思,当横轴上其他数据离我们要求的x的距离非常远的时候,w就接近于0.反之,w就接近于1.这样可以带来这种效果:里x越远的值,其分类错误越是被忽略(权值越小)。离x越近的值,其分类错误越被重视(权值越大)。这种算法每次预测一个值时,就要重新进行整个数据集的处理以进行拟合。所以对于训练数据较大的情况也是不合适的。andrew ng提到可以用KD-tree的方法解决这个问题。

 

线性模型的概率解释

首先解释为什么最小二乘是有效的。

 

最后一项ε可以看做对未知错误的捕获。比如说还有很多条件或者因素或者噪声我们没考虑到,都把它们归结到最后一项ε中。我们假设ε是符合独立同分布的。而且符合均值为0,方差为的高斯分布。那么ε的概率密度函数即

符合以上条件后,我们可以得出y也是符合以x为条件,θ为参数的高斯分布:

注意,上面θ的前面是分号,表示不知道θ的值,但是θ肯定不是随机变量。把上面的这个式子表示为θ的似然性函数:

X代表整个的数据集。因为假设每个数据是独立的,所以上面的这个式子可以改写为

 

我们最大化L(θ),为什么要最大化这个似然性呢?这里表示的意义是选择一个θ,使得数据出现的概率越大越好。这就说明这些数据是可靠的。

为了处理上的方便,我们不直接处理L(θ),而是要对其取对数:

 

大家可以分析一下最后得出的结论,前面的一项是固定大小的,我们要最大化L(θ),就要最小化这一部分:

这个就是我们在最小二乘法中使用的cost function!(参加我的上一篇博客)所以从概率上证明了最小二乘回归的有效性。

 

Logistic 回归

在上一篇博客中,我们定义

因为假设这个要拟合的函数是线性的。

下面我们假设这个分布是个Logistic 函数类型的。

其中

函数个g(z)被称为logistic函数或者sigmoid函数。函数的二维表示是下面这样的

大家可以看出,我们把输出都归一化到0~1之间了。

同样用概率的方法证明其可行性。我们有如下假设:

上面的2个表达式可以浓缩为下面的一个:

同样我们求θ的最大似然函数:

基于梯度上升的方法,最终我们会得到一个这样的表达式:

细心的读者可能发现这与线性回归最终得到的表达式是一样的!!但是我们假设的前提不是线性的,而是logistic函数的。其原因是表面上看起来这个表达式是一样的,但是其中的h(x)已经非常不一样了,仅仅是大体框架是一样的。

 

 

转载于:https://www.cnblogs.com/mutex/p/3462219.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值