检测有没有物体移动
import cv2 import time camera = cv2.VideoCapture(0) if camera is None: print('请先连接摄像头') exit() fps = 5 # 帧率 pre_frame = None # 总是取前一帧做为背景(不用考虑环境影响) play_music = False while True: start = time.time() res, cur_frame = camera.read() if res != True: break end = time.time() seconds = end - start if seconds < 1.0/fps: time.sleep(1.0/fps - seconds) cv2.imshow('img', cur_frame) key = cv2.waitKey(30) & 0xff if key == 27: break gray_img = cv2.cvtColor(cur_frame, cv2.COLOR_BGR2GRAY) gray_img = cv2.resize(gray_img, (500, 500)) gray_img = cv2.GaussianBlur(gray_img, (21, 21), 0) if pre_frame is None: pre_frame = gray_img else: img_delta = cv2.absdiff(pre_frame, gray_img) thresh = cv2.threshold(img_delta, 25, 255, cv2.THRESH_BINARY)[1] thresh = cv2.dilate(thresh, None, iterations=2) image, contours, hierarchy = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) for c in contours: if cv2.contourArea(c) < 1000: # 设置敏感度 continue else: #print(cv2.contourArea(c)) print("前一帧和当前帧不一样了, 有什么东西在动!") play_music = True break pre_frame = gray_img camera.release() cv2.destroyAllWindows()
加入人脸识别
import cv2 import time save_path = './face/' face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') eye_cascade = cv2.CascadeClassifier('haarcascade_eye.xml') camera = cv2.VideoCapture(0) # 参数0表示第一个摄像头 # 判断视频是否打开 if (camera.isOpened()): print('Open') else: print('摄像头未打开') # 测试用,查看视频size size = (int(camera.get(cv2.CAP_PROP_FRAME_WIDTH)), int(camera.get(cv2.CAP_PROP_FRAME_HEIGHT))) print('size:'+repr(size)) fps = 5 # 帧率 pre_frame = None # 总是取视频流前一帧做为背景相对下一帧进行比较 i = 0 while True: start = time.time() grabbed, frame_lwpCV = camera.read() # 读取视频流 gray_lwpCV = cv2.cvtColor(frame_lwpCV, cv2.COLOR_BGR2GRAY) # 转灰度图 if not grabbed: break end = time.time() # 人脸检测部分 faces = face_cascade.detectMultiScale(gray_lwpCV, 1.3, 5) for (x, y, w, h) in faces: cv2.rectangle(frame_lwpCV, (x, y), (x + w, y + h), (255, 0, 0), 2) roi_gray_lwpCV = gray_lwpCV[y:y + h // 2, x:x + w] # 检出人脸区域后,取上半部分,因为眼睛在上边啊,这样精度会高一些 roi_frame_lwpCV = frame_lwpCV[y:y + h // 2, x:x + w] cv2.imwrite(save_path + str(i) + '.jpg', frame_lwpCV[y:y + h, x:x + w]) # 将检测到的人脸写入文件 i += 1 eyes = eye_cascade.detectMultiScale(roi_gray_lwpCV, 1.03, 5) # 在人脸区域继续检测眼睛 for (ex, ey, ew, eh) in eyes: cv2.rectangle(roi_frame_lwpCV, (ex, ey), (ex + ew, ey + eh), (0, 255, 0), 2) cv2.imshow('lwpCVWindow', frame_lwpCV) # 运动检测部分 seconds = end - start if seconds < 1.0 / fps: time.sleep(1.0 / fps - seconds) gray_lwpCV = cv2.resize(gray_lwpCV, (500, 500)) # 用高斯滤波进行模糊处理,进行处理的原因:每个输入的视频都会因自然震动、光照变化或者摄像头本身等原因而产生噪声。对噪声进行平滑是为了避免在运动和跟踪时将其检测出来。 gray_lwpCV = cv2.GaussianBlur(gray_lwpCV, (21, 21), 0) # 在完成对帧的灰度转换和平滑后,就可计算与背景帧的差异,并得到一个差分图(different map)。还需要应用阈值来得到一幅黑白图像,并通过下面代码来膨胀(dilate)图像,从而对孔(hole)和缺陷(imperfection)进行归一化处理 if pre_frame is None: pre_frame = gray_lwpCV else: img_delta = cv2.absdiff(pre_frame, gray_lwpCV) thresh = cv2.threshold(img_delta, 25, 255, cv2.THRESH_BINARY)[1] thresh = cv2.dilate(thresh, None, iterations=2) image, contours, hierarchy = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) for c in contours: if cv2.contourArea(c) < 1000: # 设置敏感度 continue else: print("咦,有什么东西在动") break pre_frame = gray_lwpCV key = cv2.waitKey(1) & 0xFF # 按'q'健退出循环 if key == ord('q'): break # When everything done, release the capture camera.release() cv2.destroyAllWindows()
用同事做了一下实验,hahahahhhh
附件
https://files.cnblogs.com/files/botoo/%E6%96%87%E4%BB%B6.rar