python变量相关性,数据科学:定量和定性变量之间的相关性(python语言)

通过numpy和matplotlib分析了月份与消费值之间的关系,结果显示存在小的负相关。数据呈现出一种可能的周期性消费模式,消费量在年内呈现先降后升再降的趋势。建议收集更多年份的数据以确认这种周期性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

我们可以使用numpy和matplotlib库来显示是否存在相关性。在

以下内容是在Jupyter笔记本中编写的,但应该在Python中删除注释为“remove”的行import numpy as np

#x values

x = [1,2,3,4,5,6,7,8,9,10,11,12]

# y values

y = [12.11836586156116, 11.713968603585668, 11.902829015188159, 10.12066900094302, 8.879703717271864, 8.384419625257689, 8.146453593663365, 7.961394876525876, 8.748848024841289, 9.820944144869841, 11.247017177860053 , 12.069888731716086]

print( np.corrcoef(x, y))

该输出:

[[1。-0.22316588]

[-0.22316588 1。]]

显示出一个小的负相关。在

然后我们可以绘制x,y值:

^{pr2}$

这给了我们以下的线索:月份和月消费之间没有直接的相关性。在

jd0vj.png

这看起来可能是一种周期性消费。假设1-12月是几个月,那么消费量从年中到年底上升,然后下降到年中,然后又上升。如果是这样的话,她会把过去几年的数据加起来。在

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值