我们可以使用numpy和matplotlib库来显示是否存在相关性。在
以下内容是在Jupyter笔记本中编写的,但应该在Python中删除注释为“remove”的行import numpy as np
#x values
x = [1,2,3,4,5,6,7,8,9,10,11,12]
# y values
y = [12.11836586156116, 11.713968603585668, 11.902829015188159, 10.12066900094302, 8.879703717271864, 8.384419625257689, 8.146453593663365, 7.961394876525876, 8.748848024841289, 9.820944144869841, 11.247017177860053 , 12.069888731716086]
print( np.corrcoef(x, y))
该输出:
[[1。-0.22316588]
[-0.22316588 1。]]
显示出一个小的负相关。在
然后我们可以绘制x,y值:
^{pr2}$
这给了我们以下的线索:月份和月消费之间没有直接的相关性。在
这看起来可能是一种周期性消费。假设1-12月是几个月,那么消费量从年中到年底上升,然后下降到年中,然后又上升。如果是这样的话,她会把过去几年的数据加起来。在