分类变量和连续变量的相关性度量

本文介绍R语言中分类变量和连续变量相关性分析的方法,包括卡方检验、Fisher精确检验、Cochran-Mantel-Haenszel检验、Pearson相关系数、Spearman等级相关系数和Kendall秩相关系数等,并介绍了如何使用R包进行实际操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文主要参考《R语言实战》中第七章内容。

首先来看一下分类变量的探索。R提供了多种检验类别型变量(因子)独立性的方法,主要有卡方独立性检验、Fisher精确检验和Cochran-Mantel-Haenszel检验


卡方检验

卡方独立性检验可以使用chisq.test()函数对二维列联表的行变量和列变量进行卡方独立性检验。


0?wx_fmt=png
图中显示:病人的治疗方式与改善情况间不独立,即存在某种相关性;而病人的性别与治疗的改善情况间是独立的,认为治疗的改善情况与病人的性别没有关系。


Fisher精确检验

可以使用fisher.test()函数进行Fisher精确检验,该检验的原假设是:边界固定的列联表中行和列是相互独立的。与许多统计软件不同的是fisher.test()函数可以在任意行列数大于等于2的二维列联表中使用,但不能用于2×2的列联表。


0?wx_fmt=png


Cochran-Mantel-Haenszel检验

可以通过mantelhaen.test()函数进行Cochran-Mantel-Haenszel检验(如果不记得该检验函数,可以尝试使用apropos('test')查询所有可用的各种检验,其中就包含M-H检验)。该检验的原假设为:两个名义变量在第三个变量的每一层中都是条件独立的


0?wx_fmt=png
上图结果显示,在不同的性别下,治疗方式与改善情况间不是独立的,仍然存在一定的相关性。


分类变量相关程度度量

如果已知某些类别型变量之间(因子)不独立,即存在一定的相关性。那如何得到相关性的大小。这里可以使用vcd包中的assocstats()函数计算二维列联表的phi系数、列联系数(contingency coefficient)和Cramer's V系数


0?wx_fmt=png


连续变量的相关性度量

对于连续变量的相关性,使用相关系数来描述变量间的关系。相关系数的符号表示正相关或负相关,其值的大小表示关系的强弱。


R中可以计算多种相关系数,包括Pearson相关系数、Spearman相关系数、Kendall相关系数、偏相关系数等。


Pearson相关系数度量了两个连续变量之间的线性相关程度;

Spearman等级相关系数可以衡量非线性关系变量间的相关系数,是一种非参数的统计方法,可以用于定序变量或不满足正态分布假设的等间隔数据;

Kendall秩相关系数也是一种非参数的等级相关度量,类似于Spearman等级相关系数。


可以通过cor函数计算这三种相关系数。cor()函数中最重要的三个参数为X,use,method:

X为指定分析的矩阵或数据框;

use指定缺失数据的处理办法(all.obs则假设不存在缺失数据,遇到缺失数据时将会报错;everything遇到缺失数据时,结果将返回missing;complete.obs进行行删除;pairwise.complete.obs则成对删除);

method指明计算相关系数的方法,可以使pearson相关系数、spearman相关系数和kendall相关系数。


attach(women)

a <- height

b <- weight

c <- a^2 #a和c之间不存在线性关系


cor(a,b,method = 'pearson')

cor(a,b,method = 'spearman')

cor(a,b,method = 'kendall')


cor(a,c,method = 'pearson')

cor(a,c,method = 'spearman')

cor(a,c,method = 'kendall')


0?wx_fmt=png

对于有缺失的数据集,通过use参数的设定,将会产生不同计算的结果:

0?wx_fmt=png


偏相关系数

偏相关系数指在控制一个或多个定量变量时,另外两个定量变量之间的相互关系。可以使用ggm包中的pcor函数计算偏相关系数。其中pcor函数中的两个重要参数是u和S:

u为一个数值向量,前两个数值表示要计算相关系数的变量下标,其余的数值为条件变量的下标;

S为所有变量的协方差矩阵。

0?wx_fmt=png
结果表明:在控制收入、文盲率和高中毕业率的影响下,人口和谋杀率之间的相关系数为0.346。偏相关系数常用于社会科学的研究中


总结:本文涉及到的R包和函数

stats包

chisq.test()

fisher.test()

mantelhaen.test()

cor()

cov()

vcd包

assocstats()

ggm包

pcor()

gmodels包

CrossTable()

这里说明一下,gmodels包中的CrossTable()函数可以实现列联表分析,其结果类似于SAS中的PROC FREQ过程。

<think>好的,我现在需要帮助用户进行二元变量之间的相关性分析。首先,我需要明确用户的需求:他们想了解两个变量之间是否存在关联以及关联的程度。根据用户提供的引用内容,特别是引用[1]提到相关分析无法预测,但可以查看变量间的关系,而回归分析可以用于预测。不过用户的问题主要集中在相关性分析,所以重点放在相关分析方法上。 接下来,我需要考虑不同的数据类型,因为不同的数据类型适用的方法不同。用户提到的是二元变量,但需要确认是连续变量还是分类变量。不过用户的问题可能更广泛,所以需要涵盖各种情况。 首先,连续变量之间的相关性分析常用皮尔逊相关系数,这是最经典的方法,适用于线性关系。然后,如果是非线性的情况,斯皮尔曼或肯德尔相关系数可能更合适,因为它们基于秩次,对非线性关系更敏感。比如引用[3]提到的Copula方法可能涉及更复杂的相关性分析,但用户可能需要基础方法。 对于分类变量,尤其是二元分类变量,可以使用卡方检验来检验独立性,或者用Phi系数、Cramer's V来衡量关联程度。比如用户的问题中提到二元变量,可能其中一个或两个都是分类变量,所以需要涵盖这些方法。 工具方面,用户可能熟悉Python或R。Python中的pandas、scipy、seaborn库可以计算相关系数可视化。R的cor()函数、psych包,或者使用corrplot包来绘制相关图。引用[2]提到的Corrgrams可能属于这类可视化工具,但如果是二元变量,可能更适合使用散点图或交叉表。 另外,用户提供的引用[3]提到Copula方法,这可能属于高级应用,但用户可能暂时只需要基础方法,不过可以简要提及作为扩展知识。 步骤方面,应该先确定变量类型,选择合适的方法,计算相关系数,进行统计检验,然后可视化结果。同时,需要注意相关性的解释,比如方向、强度,以及因果关系不能从相关性中得出。 可能用户会混淆相关分析回归分析的区别,引用[1]指出相关分析不用于预测,而回归分析可以。所以需要明确分析目的,如果只是了解关联,相关分析足够;如果需要预测,则用回归。 最后,生成相关问题时要围绕用户的问题扩展,比如方法选择、工具使用、结果解释、高级方法等。 现在需要整理这些思路,用中文清晰回答,并按照用户的要求使用正确的LaTeX格式,分步骤说明,最后生成相关问题。</think>### 二元变量相关性分析方法工具 #### 一、明确变量类型 首先需明确两个变量的数据类型,不同数据类型对应不同分析方法: 1. **连续变量 vs 连续变量** 使用$r$(皮尔逊相关系数)衡量线性关系: $$ r = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2 \sum (y_i - \bar{y})^2}} $$ 取值范围$[-1,1]$,绝对值越大相关性越强[^1]。 2. **有序分类变量 vs 有序分类变量** 使用斯皮尔曼秩相关系数$ρ$或肯德尔τ系数,衡量单调关系。 3. **二元分类变量 vs 二元分类变量** 使用卡方检验判断独立性,配合Phi系数或Cramer's V量化关联强度。 #### 二、选择方法工具 | 数据类型组合 | 方法 | Python工具 | R工具 | |---------------------|--------------------------|-------------------------|-----------------------| | 连续-连续 | 皮尔逊相关系数 | `scipy.stats.pearsonr` | `cor.test()` | | 连续-分类 | 点双列相关系数 | `scipy.stats.pointbiserialr` | `ltm::biserial.cor()` | | 分类-分类 | 卡方检验 + Phi系数 | `scipy.stats.chi2_contingency` | `chisq.test()` | #### 三、实施步骤(以Python为例) 1. **数据可视化** ```python import seaborn as sns sns.scatterplot(x='var1', y='var2', data=df) # 连续变量 sns.heatmap(pd.crosstab(df['cat1'], df['cat2'])) # 分类变量 ``` 2. **计算相关系数** ```python from scipy import stats # 连续变量 pearson_r, p_value = stats.pearsonr(df['var1'], df['var2']) # 分类变量 chi2, p, dof, expected = stats.chi2_contingency(pd.crosstab(df['cat1'], df['cat2'])) ``` 3. **结果解读** - $p<0.05$时拒绝独立性假设 - 相关系数绝对值: $0.1<$弱相关,$0.3<$中等相关,$0.5<$强相关[^2] #### 四、高级方法(可选) 1. **Copula分析**:处理非线性/非对称依赖关系,适用于金融风险分析等场景[^3] 2. **信息熵分析**:通过互信息度量任意类型变量间的依赖关系
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值