python对数正态分布函数,使对数正态分布适合已分类的数据python

博主尝试对已经分箱的数据显示的对数正态分布进行拟合,发现使用标准的`lognorm.pdf()`函数得到的形状与实际数据不符。通过更新代码并使用`curve_fit()`函数,得到了更接近的拟合,但仍希望找到更优的解决方案,尤其是保持原始分箱而不是单位分箱,并确保有更好的拟合效果。
摘要由CSDN通过智能技术生成

I would like to make a lognormal fit to my already binned data. The bar plot looks like this: twvWS.png

Unfortunately, when I try to use the standard lognorm.pdf() the shape of the fitted distribution is very different. I guess it's because my data is already binned. Here's the code:

times, data, bin_points = ReadHistogramFile(filename)

xmin = 200

xmax = 800

x = np.linspace(xmin, xmax, 1000)

shape, loc, scale = stats.lognorm.fit(data, floc=0)

pdf = stats.lognorm.pdf(x, shape, loc=loc, scale=scale)

area=data.sum()

plt.bar(bars, data, width=10, color='b')

plt.plot(x*area, pdf, 'k' )

Here's what the fitted distribution looks like:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值