可逆矩阵性质总结_矩阵的逆

本文介绍了可逆矩阵的概念,强调了可逆矩阵的逆矩阵是唯一的,并给出了多个关于可逆矩阵的性质,如乘法的消去律。此外,还阐述了非奇异矩阵作为可逆矩阵的判别条件,以及转置伴随矩阵在求逆过程中的作用。逆矩阵的存在定理指出,行列式不为零的方阵是可逆的。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2ae6b0c4257d11327c7182e88bee72af.png

一、可逆矩阵与逆矩阵

1.定义

对于矩阵A,如果存在一个矩阵B,使得

则称矩阵A为可逆矩阵,简称A可逆,称B为A的逆矩阵,记为

注意 矩阵A与B的地位是平等的,也可称B为可逆矩阵,

例如

00e959845dc53d6643ed755065af9269.png

则AB= BA= E,B为A的逆矩阵.

说明 若A是可逆矩阵,则A的逆矩阵是唯一的.

2.可逆矩阵的性质

性质1若矩阵A可逆,则A的逆矩阵唯一;

性质2若矩阵A可逆,则

也可逆,且
;

性质3若矩阵A可逆,数

,则
也可逆,且

性质4若n阶矩阵A和B都可逆,则AB也可逆,且

推论

是同阶可逆阵,则乘积矩阵
也可逆,且

性质5若矩阵A可逆,则

也可逆,且

性质6 若矩阵A可逆,则

说明 若矩阵A ,B ,C满足AB=AC,且A可逆,则

7d3faa0c13dd66bb4ef6cc387e5099c1.png

可逆矩阵相乘有消去律

二、可逆矩阵的判别

定义2 若方阵A满足

,则称A为非奇异矩阵或非退化矩阵;否则称A为奇异矩阵或退化矩阵.

定义3

是n阶方阵

bb08e8e65df8dc88d9db1d887931cbde.png

中元素

的代数余子式,则
按转置排列成的矩阵

e35dce2ce7fb9e7450e56b3b7fe7a7c4.png

称为矩阵A的转置伴随矩阵,习惯记为

由代数余子式组合定理

326a31b6a1fe044822257c6b16dfc2be.png

,上式两端除以非零数
,得

40e8a6927f93f90b612533ecd3ad39bb.png

81c9e2a0323084bc25624788a6bba318.png

定理1 (逆矩阵的存在定理)

n阶矩阵A可逆的充分必要条件是

,且当方阵A可逆时,有

d296b96ba543576a870cf1e23a648ac1.png

aba2acb1b7a3b2cde10f6bce9874ee5f.png

923aa3460833d549f5a4fa4f35db0dc5.png

4bb475736762ce7ce4c3b576ee031d60.png

8a8c119ba6409249fe57fb91273c9901.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值