图像匹配算法 java_Java OpenCV 模版匹配

该博客介绍了如何使用Java和OpenCV库进行图像模板匹配。通过读取待匹配图片和模板图片,应用不同的匹配方法(如TM_CCORR_NORMED),找到最佳匹配区域,并在原图上画出匹配框。最后,展示匹配结果和模板图片。
摘要由CSDN通过智能技术生成

public classMatchTemplate {private final static String path=System.getProperty("user.dir")+"\\line.png";static{

platformUtils.loadLibraries();

}public static voidmain(String[] args) {//待匹配图片

Mat src = Imgcodecs.imread("template.jpg",Imgcodecs.IMREAD_GRAYSCALE);

Mat src_img=src.clone();//获取匹配模板

Mat template = Imgcodecs.imread("test.png",Imgcodecs.IMREAD_GRAYSCALE);/*** TM_SQDIFF = 0, 平方差匹配法,最好的匹配为0,值越大匹配越差

* TM_SQDIFF_NORMED = 1,归一化平方差匹配法

* TM_CCORR = 2,相关匹配法,采用乘法操作,数值越大表明匹配越好

* TM_CCORR_NORMED = 3,归一化相关匹配法

* TM_CCOEFF = 4,相关系数匹配法,最好的匹配为1,-1表示最差的匹配

* TM_CCOEFF_NORMED = 5;归一化相关系数匹配法*/

int method =Imgproc.TM_CCORR_NORMED;//创建32位模板匹配结果Mat

Mat result=newMat(src.rows(),src.cols(),CvType.CV_32FC1);/** 将模板与重叠的图像区域进行比较。

使用JavaOpenCV来计算图片相似度的方法主要包括以下几个步骤: 1. 加载图片:首先,使用OpenCV库的Java接口,通过指定图片路径来加载需要比较的两张图片。 2. 图像预处理:对于加载的每张图片,可以进行一些预处理操作,例如图像缩放、灰度化等。这些操作可以提高后续的图像处理和特征提取的效果。 3. 特征提取:通过使用OpenCV提供的图像处理算法和函数,可以提取出两张图片的特征。例如,可以使用SIFT、SURF或ORB等算法来提取出图片中的特征点和描述子。 4. 特征匹配:将特征提取的结果进行匹配,计算出两张图片之间的相似度。可以使用OpenCV中的FLANN或者Brute-Force算法来进行特征匹配。 5. 相似度计算:根据特征匹配的结果,可以根据一定的规则或算法来计算出两张图片之间的相似度。例如,可以计算出特征点的相似度比例、特征匹配的相似度得分等。 6. 结果展示:将计算得到的相似度结果进行展示和输出。可以在控制台输出结果,或者根据需要将结果显示在图形界面上。 需要注意的是,图片相似度的计算是一个较为复杂的问题,不同的算法和方法会有不同的精度和效果。在实际应用中,可以根据具体的需求选择合适的算法和参数来进行处理。另外,由于图像处理和特征提取的计算量较大,可能会需要较长的时间来完成整个过程。因此,在进行大量图片的相似度计算时,需要考虑到计算时间和资源的消耗。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值