python kfold交叉验证_Scikit Learn-使用KFold交叉验证的决策树

我对scikit学习/机器学习比较陌生 . 我必须使用Titanic数据集创建决策树,并且需要使用5倍的KFold交叉验证 . 这是我到目前为止所拥有的:

cv = KFold(n_splits=5)

tree_model = tree.DecisionTreeClassifier(max_depth=3)

print(titanic_train.describe())

fold_accuracy = []

for train_index, valid_index in cv.split(X_train):

train_x,test_x = X_train.iloc[train_index],X_train.iloc[valid_index]

train_y,test_y= y_train.iloc[train_index], y_train.iloc[valid_index]

model = tree_model.fit(train_x,train_y)

valid_acc = model.score(test_x,test_y)

fold_accuracy.append(valid_acc)

print(confusion_matrix(y_test,model.predict(X_test)))

print("Accuracy per fold: ", fold_accuracy, "\n")

print("Average accuracy: ", sum(fold_accuracy)/len(fold_accuracy))

dot_data = StringIO()

我的问题是,我的拟合模型是否只存在于循环中?我需要从测试训练集中准确预测,其中“幸存”未标记(在混淆矩阵中,X_Test是测试数据集X值,y_test是实际存活率),我不确定通过训练使用此方法,我的主分类器(tree_model)正在使用折叠中的每个集合进行训练 .

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值