估计值与平均值的离差平方和_观察值与均值的离差平方和最小.PPT

观察值与均值的离差平方和最小

第四章 集中趋势和离中趋势 4.1 集中趋势的计量 4.2 离中趋势的计量 4.3 数据的分布形状 4.1 集中趋势的计算 1.简单算术平均数 计算公式: 它是反映数据集中的主要测度。 算术平均的统计含义:算术平均数是同质总体各数据偶然性、随机性特征互相抵消后的稳定数值。反映数据集中的特征。 例 某生产班组11个工人的日产零件数分别为:15,17,19,20,22,…26,30。求该生产班组工人的平均日产零件数。 算术平均值的性质一:数据观察值与均值的离差值之和为零. 此性质表明均值是各数值的重心 2.加权算术平均数 如果数据是分组资料,经过整理形成了次数分配,由于各组次数不同,要用次数作权数计算加权算术平均数。 则均值的计算公式为: 二、中位数 ③如果是组距分组资料,公式为: 三、众 数 众数是一组资料中出现次数最多的那个数值,也反映数据集中的程度( M0 )。 ①未分组资料,M0就是出现次数最多的变量值。 20,15, 18,20,20,22,20,23 20,20,15,19, 19, 20,19,25 10,11,13,16,15,25 ,8,12 ②分组资料:在等距分组的情况下,频数最多的组是众数组,在该组内确定众数。 在Excel中 AVERAGE()—计算算术平均数 利用SUM()函数和SUMPRODUCT()函数求加权算术平均。 MEDIAN()—计算中位数 MODE()—计算众数 四、均值、中位数、众数三者之间的关系 五、集中趋势的其它测度量 1.分位数:四分位数、十分位数、百分位数。 分位数的计算: (1)将资料按大小顺序排列; (2)求出分位数所在位置i; (3)若i为整数,则所求分位数为该位置上的数值;若i为非整数,则取第i与第i+1位置的两个数值的平均数为所求分位数。 (4)若资料为分组数据,则各分位数可按下式计算: 方法3 Excel给出的四分位数位置的确定方法 方法3 Excel方法 2.几何平均数 公式为: 用于计算平均比率或平均速度。包括 (1)对比率进行平均; (2)测定生产或经济变量的时间序列的平均增长率。 3.调和平均值 调和平均值是观察值倒数之平均数的倒数,也称倒数平均数。用 表示: 应用条件:资料经过分组,各组次数不同。 算术平均、几何平均、调和平均三者关系 三者均属于均值体系 算术平均值是直接对观测值进行平均;几何平均值是对观察值对数后的平均;调和平均值是对观察值取倒数后平均;一般情况下,有如下关系: 在Excel中 QUARTILE()—计算四分位数 PERCENTILE()—计算百分位数 GEOMEAN()—计算几何平均数 HARMEAN()—计算简单调和平均数 4.2 离中趋势的计算 离中趋势是数据分布的又一特征,它表明变量值的差异或离散程度。 离中趋势测度经常用到的指标有:极差、方差和标准差、四分位差等,它们也被称为变异指标。 一、 极差 极差也称为全距,是一组数据的最大值和最小值的差: 缺点:易受极端值的影响。 二、平均差 1、平均差是指数据值与其均值之差的绝对值的算术平均值,用符号A·D表示。计算公式: 2、优点:完整地反映了全部数据的分散程度,计算方法简单; 缺点:易受极值影响,绝对值计算不方便。 三、 方差与标准差 总体方差是观察值与其均值离差平方和的均值; 总体标准差是总体方差的正平方根; 如果计算总体方差的资料是次数分配数据,在计算总体方差时要将各组权数考虑进去,有如下公式: 样本方差与样本标准差 当样本数据个数足够大时,样本方差与总体方差很接近 在Excel中 Max()-min() —计算极差 AVEDEV()—计算平均差 VARP()—计算总体方差 VAR()—计算样本方差 STDEVP()—计算总体标准差 STDEV()—计算样本标准差 四、Chebishev定理与经验法则 1.Chebishev定理: 对任何一组资料,观测值落于均值左右k个标准差的区间内的比例,至少为(1-1/k2)。 Chebishev定理适用于任何形状的次数分布资料,但此区间是一个比较保守的估计值。 2.经验法则: 当资料分布呈对称形状时,有: (1)约有68%的观测值落于 的区间内; (2)约有95%的观测值落于 的区间内;

表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页