预测问题的评价指标 MSE, RMSE, MAE, MAPE

本文介绍了预测模型评价的四个关键指标:算数平均值(期望)、方差与标准差、均方误差(MSE)、均方根误差(RMSE)、平均绝对误差(MAE)以及平均绝对相对误差(MAPE)。通过具体案例解释了这些指标的计算方法及其在评估模型性能时的重要性。MAPE特别指出,当真实值包含0时,计算中会遇到分母为0的问题,应避免使用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 算数平均值(期望)

在这里插入图片描述

2. 方差与标准差

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

图片来源

3. 均方误差 MSE(mean square error)

用 真实值-预测值 然后平方之后求和平均。
在这里插入图片描述

import numpy as np
from sklearn import metrics
y_true = np.array([1.0, 5.0, 4.0, 
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值