利用
matlab
怎样进行频谱分析
图像的频率是表征图像中灰度变化剧烈程度的指标,
是灰度在平面空间上的
梯度。
如:
大面积的沙漠在图像中是一片灰度变化缓慢的区域,
对应的频率值很
低;而对于地表属性变换剧烈的边缘区域在图像中是一片灰度变化剧烈的区域,
对应的频率值较高。傅立叶变换在实际中有非常明显的物理意义,
设
f
是一个能
量有限的模拟信号,则其傅立叶变换就表示
f
的谱。从纯粹的数学意义上看,
傅
立叶变换是将一个函数转换为一系列周期函数来处理的。
从物理效果看,
傅立叶
变换是将图像从空间域转换到频率域,其逆变换是将图像从频率域转换到空间
域。
换句话说,
傅立叶变换的物理意义是将图像的灰度分布函数变换为图像的频
率分布函数,傅立叶逆变换是将图像的频率分布函数变换为灰度分布函数。
这样
通过观察傅立叶变换后的频谱图,也叫功率图,我们首先就可以看出,
图像的能量分布
,
如果频谱图中暗的点数更多,
那么实际图像是比较柔和的
(因
为各点与邻域差异都不大,梯度相对较小),反之,如果频谱图中亮的点数多,
那么实际图像一定是尖锐的,
边界分明且边界两边像素差异较大的。
对频谱移频
到原点以后,可以看出图像的频率分布是以原点为圆心,对称分布的。将频谱
移频到圆心除了可以清晰地看出图像频率分布以外,还有一个好处,它可以分
离出有周期性规律的干扰信号,比如正弦干扰,一副带有正弦干扰,移频到原
点的频谱图上可以看出除了中心以外还存在以某一点为中心,对称分布的亮点
集合,这个集合就是干扰噪音产生的,这时可以很直观的通过在该位置放置带
阻滤波器消除干扰。
另外我还想说明以下几点:
1
、图像经过二维傅立叶变换后,其变换系数矩阵表明:
若变换矩阵
Fn
原点设在中心,其频谱能量集中分布在变换系数短阵的中心附近
(
图中阴影区
)
。若所用的二维傅立叶变换矩阵
Fn
的原点设在左上角,那么图像
信号能量将集中在系数矩阵的四个角上。这是由二维傅立叶变换本身性质决定
的。同时也表明一股图像能量集中低频区域。
2
、变换之后的图像在原点平移之前四角是低频,最亮,平移之后中间部分是低
频,最亮,亮度大说明低频的能量大(幅角比较大)。
从计算机处理精度上就不难理解,
一个长度为
N
的信号,
最多只能有
N/2+1
个不同频率,再多的频率就超过了计算机所能所处理的精度范围)
X[]
数组又分两种,一种是表示余弦波的不同频率幅度值:
Re
X[]
,
另一种是
表示正弦波的不同频率幅度值:
Im
X[]
,
Re
是实数
(Real)
的意思,
Im
是虚数
(Imagine)
的意思,采用复数的表示方法把正余弦波组合起来进行表示,但这里
我们不考虑复数的其它作用,
只记住是一种组合方法而已,
目的是为了便于表达
(在后面我们会知道,复数形式的傅立叶变换长度是
N
,而不是
N/2+1
)。