matlab相关性分析频谱_实验2利用MATLAB分析信号频谱和系统的频率特性.ppt

实验2利用MATLAB分析信号频谱和系统的频率特性

实验2 利用MATLAB分析信号与系统的频域特性 实验目的 1.深入理解信号频谱的概念,掌握典型信号的频谱以及Fourier 变换的主要性质及其matlab实现; 2.学习和掌握连续时间系统的频率特性及其幅度特性、相位特性的物理意义及其matlab实现; 3.掌握 抽样定理 实验原理一 傅立叶变换和反变换的Matlab实现 Matlab提供了能直接求解傅立叶变换和反变换的函数fourier()、ifourier()。 调用格式分别为: F=fourier(f) f=ifourier(F) 举例1 syms t x=exp(-2*abs(t)) F=fourier(x) subplot(211) ezplot(x) subplot(212) ezplot(F) 仿真波形 举例2 傅里叶变换的对称性 命令代码1: syms t r=0.01;%采样间隔 j=sqrt(-1); t=-15:r:15; f=sin(t)./t;%计算采样函数的离散采样点 f1=pi*(Heaviside(t+1)-Heaviside(t-1));%计算脉宽为2的门信号的离散采样点 N=500;%采样点数 k = -N:N; W=5*pi*1;%设定采样角频率 w=k*W/N;%对频率采样 续 F=r*sinc(t/pi)*exp(-j*t'*w);%计算采样函数的频谱 F1=r*f1*exp(-j*t‘*w);%计算门函数的频谱 subplot(221);plot(t,f); xlabel('t'); ylabel('f(t)'); subplot(222); plot(w,F); axis([-2 2 -1 4]); xlabel('w'); ylabel('F(w)'); subplot(223); plot(t,f1); axis([-2 2 -1 4]); xlabel('t'); ylabel('f1(t)'); subplot(224); plot(w,F1); axis([-20 20 -3 7]); xlabel('w'); ylabel('F1(w)'); 仿真波形 仿真波形 实验原理二 连续时间系统频率响应的MATLAB实现 系统频率响应,是指系统在正弦信号激励下稳态响应随频率变化的情况,包括幅度随频率的响应和相位随频率的响应两个方面。 Matlab提供了专门对连续时间系统频率响应H(jω)进行分析的函数freqs()。该函数可以求出系统频率响应的数值解,并可绘出系统的幅频和相频响应曲线。 一般调用格式: [h,w]=freqs(b,a,n) 其中h为返回w所定义的频率点w上系统频率响应的幅值;b为系统频率响应分子多项式系数,a为系统频率响应分母多项式系数,n为输出频率点个数。 举例3 已知一RLC二阶低通滤波器,该电路的频率响应为 用freqs函数绘出该频率响应。 命令代码: b=[0 0 1]; a=[0.08 0.4 1]; [h,w]=freqs(b,a,100); h1=abs(h); h2=angle(h); subplot(211); plot(w,h1); grid xlabel('角频率(W)'); ylabel('幅度'); title('H(jw)的幅频特性'); subplot(212); plot(w,h2*180/pi); grid xlabel('角频率(W)'); ylabel('相位(度)'); title('H(jw)的相频特性'); 仿真波形 实验原理三 抽样定理的Matlab实现 举例4 用有限时宽余弦信号f(t)=cos(2πt/3)(0≤t ≤40)近似理想余弦信号,用Matlab编程画出该信号及其抽样信号的频谱,并对比观察过抽样和欠抽样状态。 解:首先计算该信号的临界抽样角频率 临界抽样频率 临界抽样周期 * * x = exp(-2*abs(t)) F = 4/(4+w^2) 时域抽样定理 一个频谱受限的信号 , 如果频谱只占据 的范围, 则信号 可以用等间隔的抽样值唯一的表示。而抽样间隔必须

相关资源:matlab求频率响应
表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页