计算机组装备课比赛,全国新华杯青年教师素养大赛一等奖计算机组装与维护公开课教案.doc...

理实一体化课程教学过程

JWC001-3-2 第 PAGE 3页

版本/状态:C/0

理实一体化课程教案(首页)

JWC001-3-1 课程名称

模块名称

计算机组装基础知识

任教班级

12信息班

任务序号及名称

计算机常见故障及排除

教学场所

组装室

知识点链接

或任务拆分

1、计算机故障

3、硬件故障的分析及排除

教学时间

45分钟

预计课时

理论

实践

教 学 情 境

主要教学设备及工具名称、数量

实训材料规格

分组模式

组装机一台

2人/组

能力目标

能够了解计算机故障,掌握硬件故障的分析及排除方法

知识目标

能够了解计算机故障,掌握硬件故障的分析及排除方法

学情分析

已学习计算机硬件知识

重 点

硬件故障的分析及排除

难点

分析

硬件故障的分析

硬件故障的排除方法

知识拓展与

迁移

难点

分析

教学方法

讲授法、演示法、实物展示法

课后任务

思考题

教学反馈与后记

审阅者:陈外平 2012 年 12 月 日

教学环节

教学过程和内容

备注

【教学回顾】3

学生互动:提问计算机的组成,主要部件有哪几个?

【教学引入】2

举例:客户电脑试图开机,但机子发生故障无法开启,表现现象为黑屏(操作演示),引出任务。

计算机故障是指计算机在使用过程中遇到的系统不能正常运行或者运行不稳定,经常出现死机或者无法启动等的现象。

【新课讲授】

任务1:解决无法开机的问题。10

分析无法开机、点亮显示器。引导学生观察计算机情况,发现计算机并无通电。通过观察发现电源线出现问题,更换电源线。从而带出第一个解决故障的方法:观察法。

观察法是通过看、听、闻、摸等手段来判断故障的位置和原因的方法。

看:主要看插头、插座等连接是否良好,板卡和其他设备是否有烧焦的痕迹,有无元件短路、电路板上是否有虚焊、脱焊和断裂等现象。

听:通过听电源风扇、CPU风扇、硬盘和显示器等设备的工作声音是否正常来判断故障产生的原因。

闻:通过闻主机和显示器是否有烧焦的气味来判断设备是否被烧毁。

摸:通过用手触摸元件表面的温度高低来判断元件是否工作正常,板卡是否安装到位和接触不良。

任务2:计算机确定已经通电,但屏幕依然黑屏,并且主板发出报警声音,如何解决问题?10

分析计算机已经通电,说明电路正常。但主板发出报警声音,提出问题,请学生对比平时使用计算机有无此现象。引导学生由此问题入手考虑。通过判断此报警声音,得出内存损坏,更换内存后报警声音消除。从而带出第二个解决故障的方法:主板报警声。

主板BIOS在系统启动时会发出报警声提示用户系统是否正常启动,常见的BIOS芯片有Award BIOS,AMI BIOS和Phoniex BIOS。Award BIOS报警声的含义如下:

1短:系统正常启动,没有任何问题。

2短:常规错误,请进入CMOS Setup,重新设置不正确的选项。

1长1短:RAM或主板出错。换一条内存试试,若还是不行,只好更换主板。

1长2短:显示器或显卡故障。

1长3短:键盘控制器错误,检查主板。

1长9短:主板Flash RAM或EPROM错误,BIOS损坏。更换Flash RAM试试。

呜啦呜啦”的救护车声,伴随着开机长响不停:这种情况是CPU过热的系统报警声,或者是CPU已经损坏。

不断地响(长声):内存条未插紧或损坏。重插内存条,若还是不行,只有更换内存。

重复短响:电源有问题。

无声音无显示:电源或主板有问题

任务3:假设计算机已消除报警声音,但依然无法使用,表现情况为黑屏,还有解决的方法吗?1

首先引导学生思考问题,计算机主要的三大配件是什么?也就是检查首要的零部件。将电脑拆除,只剩下电源、主板和CPU,尝试是否工作正常,如正常者逐步的添加内存,硬盘,光驱等设备,直到问题的出现。最后通过此方法得出硬盘数据线出现问题,更换硬盘线,问题解决。

从而带出第三个和第四个解决故障的方法:最小系统法与逐步添加/去除法

(1)最小系统法

计算机能运行的最小环境就是计算机的最小系统,即计算机运行时主机内的部件最少。最小系统是指,从维修判断的角度能使电脑开机或运行的最基本的硬件和软件环境。最小系统有两种形式:

硬件最小系统:由电源、主板和CPU组成。在这个系统中,没有任何信号线的连接,只有电源到主板的电源连接。在判断过程中是通过声音来判断这一

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值