两个向量之间的夹角公式_关于平面向量夹角求参数取值范围的两种基本解法介绍...

平面向量的夹角问题是考察高中向量知识掌握程度的常考内容,主要涉及到的知识点是平面向量的数量积公式。在这里介绍一道常见的平面向量题目,通过两种最基本的解法,来帮助同学们理解向量之间的夹角。

填空题第15题:

设平面向量a=(-2,1),b=(λ,2),若a和b的夹角为锐角,则λ的取值范围为(-∞,-4)∪(-4,1)。

常规解法1:涉及到两个向量的夹角,首先想到向量的数量积公式,题目给出夹角的取值范围为(0,π/2),进而得出夹角余弦值的取值范围为(0,1),则要求λ的取值范围也比较容易,解除2个不等式的解集,然后取交集即可。

aa36736bdc02bb821dcdc5b5557d64c7.png

特殊解法2:利用数形结合思想来,在图上体现夹角的取值范围,通过夹角的变化来寻找向量b在平面直角坐标系y=2这条直线上点的横坐标的变化,如下图:

e532565ec2042b057123c4f799371ba6.png

由上图可知,B1和B2是向量a和b垂直也就是夹角为90度的情况下产生的,B1的横坐标是1,也就是λ的极限最大值逼近1,但不等于1,从OB1这条射线出发,逆时针旋转,只要转过的角度在0度到90度之间即可,不能等于0度,也不能等于90度,且,它与y=2这条直线必须相交,保证向量b的纵坐标总是2.

根据图形所画,很明显OB1是无法旋转到x轴的负半轴之下,但可以往负无穷大走。同时,对向量基本概念扎实的同学,应该能想到,在OB1旋转的过程,有一种特殊情况需要排除,也就是当2个向量共线时,夹角为0度,这不符合题意,对应在图形中则是0B2这条射线,λ此时等于-4。

因此根据上图的分析,只要图形准确、分析全面,就可以很快得出正确答案。相对而言,对于此题解法二更快速,当然对向量的能力和数形结合思想的运用要求也高。

好了,同学们明白了吗?加油,你一定能学好数学的!

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值