对一道数学题,往往可以从不同的角度去分析。首先,可以从不同的知识角度去分析。小学生有小学生的知识角度;中学生有中学生的知识角度;大学生有大学生的知识角度。其次,可以从不同的方法角度去分析。可以有算术方法的角度、代数方法的角度、几何方法的角度。最后,可以从不同的观察角度去分析。对于同一个几何图形,观察的角度不同,往往可以把它分解成不同的构成部件。角度不同,解决问题的思路往往也会不同。
一、不同的知识角度
例1
说明0.999…=1。
角度1
从求两个数的平均数的角度分析。
如果求两个数的平均数,其结果等于其中的某个数,则说明这两个数是相等的。
(0.999…+1)÷2=1.999…÷2=0.999…
所以,0.999…=1。
角度2
从把无限循环小数化为分数的角度分析。
设x=0.999…,则
10x=9+0.999…=9+x。
解得x=1,即0.999…=1。
角度3
从级数的角度分析。
把0.999…看成如下级数:
因为
所以0.999…=1。
角度4
从实数理论的角度分析。
根据实数理论,基本序列的极限为实数。如果两个基本序列的极限相等,康托称其为等价类。这样,一个实数与一个由基本序列组成的等价类一一对应。例如,下面的两个序列
(1)0.9,0.99,0.999,…
(2)1,1,1,…
是等价的两个基本序列,因此它们定义同一个实数1。这也就表明:0.9999…=1。
以上四个角度分别对应不同的知识角度。角度1对应小学生的知识角度;角度2对应中学生的知识角度;角度3和角度4对应大学生的知识角度。知识越丰富,就更能够从多角度思考问题。
例2
求证:方程 (x-a)(x-a-b)=1有两个实数根,并且其中一个根大于a,另一个根小于a。
角度1
用求根公式求出方程的两个根。
将方程化为一般形式:
∴方程有两个实数根。
角度2
用韦达定理。
角度3
用二次函数知识。
设 f(x)=(x-a)(x-a-b),这是一个二次函数,其图象是开口向上的抛物线。
由于f(a)=-1<0,且抛物线开口向上,于是抛物线与x轴必有两个交点,且这两个交点位于直线x=a的两侧。所以,原方程有两个实数根,且一个根大于a,一个根小于a。
二、不同的方法角度
例3
“鸡兔同笼”问题:今有鸡兔同笼,上有35头,下有94足,问鸡兔各几何?
角度1
算术方法
如果每只鸡都用一只脚站着,而每只兔子都用后腿站着,在这种情况下,总脚数只出现了一半,即47只脚。在47这个数里,鸡的头数只数了一次,而兔子的头数却数了两次,从47里减去总的头数35,得到的就是兔子的头数:47-35=12,即有12只兔子。那么鸡就是35-12=23只。
角度2
代数方法
设鸡x只,兔子y只。据题意得
解得x=23,y=12。
如果用a表示头的总数,用b表示脚的总数,则可得
这就解释了上述的算术解法。
例4
如图1,线段AB的长为4,C为AB上一动点,分别以AC、BC为斜边在AB的同侧作等腰直角三角形ACD和等腰直角三角形BCE,那么DE长的最小值是 ( )。
图1
角度1
代数方法
转化为求二次函数的最值问题:
设AC=x,则
可得当x=2时,DE的最小值为2。
角度2
几何方法
转化为点到直线的垂线段最短:如图2,分别过点D、E作AB的垂线,垂足分别为点M、N,则DE≥MN=2。
图2
例5
从几何角度思考:
对于(1):如图3所示,如果把等式右边结果中的n(n+1)看着长和宽分别为n、n+1的矩形的面积,则易证。
图3
图4
对于(3):如图5所示,把等式右边的
中的
看成长和宽分别为
的矩形的面积,从而可得
图5
从代数角度思考:
(1)和(2)略。
对于(3):将所求的和记为S,根据立方差公式可得:
从而可得:
将上述n个式子相加得:
从而可得
三、不同的观察角度
对于例2,如果把x-a看着一个整体,会使解答过程更简单:
如果设 y=x-a,则原方程化为
即
因此,不同的观察角度,会影响解题的难易程度。
例6
证明:三角形任意两边之和大于第三边。
如图6,已知△ABC,求证:AB+BC>AC。
图6
观察角度1
把AB、BC、AC分别看成△ABC的三边。如图7,延长AB至D,使BD=BC。在△ADC中,根据大角对大边,可得AD>AC,从而可得AB+BC>AC。
图7
观察角度2
把AB+BC看着A、C两点之间的折线,根据“两点之间线段最短”可得AB+BC>AC。
例7
证明:等边对等角。
已知:如图8,在△ABC中,AB=AC。
求证:∠B=∠C。
图8
观察角度1
由等腰三角形的轴对称性得到启发,通过作辅助线予以证明。
如图9所示是华东师大版初中数学教材给出的证明方法。
观察角度2
把∠B、∠C分别看成△ABC、△ACB的内角,通过证明△ABC≌△ACB,得出∠B=∠C。
其证明过程如下:
如图8,在△ABC和△ACB中,
∴△ABC≌△ACB(S.A.S)。
∴∠B=∠C。
不同的知识角度依赖于知识水平;不同的方法角度依赖于解题经验;不同的观察角度依赖于观察力。较强的解题能力取决于宽广的知识、丰富的解题经验和敏锐的观察力。