已知两边求角度公式_看问题的角度决定解决问题的思路 ——再谈如何解数学题...

对一道数学题,往往可以从不同的角度去分析。首先,可以从不同的知识角度去分析。小学生有小学生的知识角度;中学生有中学生的知识角度;大学生有大学生的知识角度。其次,可以从不同的方法角度去分析。可以有算术方法的角度、代数方法的角度、几何方法的角度。最后,可以从不同的观察角度去分析。对于同一个几何图形,观察的角度不同,往往可以把它分解成不同的构成部件。角度不同,解决问题的思路往往也会不同。

一、不同的知识角度

例1

说明0.999…=1。

角度1

从求两个数的平均数的角度分析。

如果求两个数的平均数,其结果等于其中的某个数,则说明这两个数是相等的。

(0.999…+1)÷2=1.999…÷2=0.999…

所以,0.999…=1。

角度2

从把无限循环小数化为分数的角度分析。

设x=0.999…,则

10x=9+0.999…=9+x。

解得x=1,即0.999…=1。

角度3

从级数的角度分析。

把0.999…看成如下级数:

3fe5e6de6930ecb148d99684d597e087.png

因为

ea9a2a0985cb9a4f6bf62db6d1c58c22.png

所以0.999…=1。

角度4

从实数理论的角度分析。

根据实数理论,基本序列的极限为实数。如果两个基本序列的极限相等,康托称其为等价类。这样,一个实数与一个由基本序列组成的等价类一一对应。例如,下面的两个序列

(1)0.9,0.99,0.999,…

(2)1,1,1,…

是等价的两个基本序列,因此它们定义同一个实数1。这也就表明:0.9999…=1。

以上四个角度分别对应不同的知识角度。角度1对应小学生的知识角度;角度2对应中学生的知识角度;角度3和角度4对应大学生的知识角度。知识越丰富,就更能够从多角度思考问题。

例2

求证:方程 (x-a)(x-a-b)=1有两个实数根,并且其中一个根大于a,另一个根小于a。

角度1

用求根公式求出方程的两个根。

将方程化为一般形式:

c0b2172c9e645946cf6346d4a3e7fb69.png 71aafb90e8229dd0191a344e36d0056e.png

∴方程有两个实数根。

b8d6f76cbf2c17ed1336a7c1205e59d2.png 301ac779ca731b972d84a1ac07bf539f.png 03a926ff9dc42ad0d9c3bed1a7641311.png

角度2

用韦达定理。

c929859ffbb8413dfc7b1b9673ef737d.png be9a69584d62a90e161ce8c25f8abbb7.png 1002fba5e754d5919fb7950606b15867.png 826d7444f994147cffb0c3a2d7f4d43a.png 7ce3219bac031584b4eb2ee353cd0f57.png

角度3

用二次函数知识。

设 f(x)=(x-a)(x-a-b),这是一个二次函数,其图象是开口向上的抛物线。

由于f(a)=-1<0,且抛物线开口向上,于是抛物线与x轴必有两个交点,且这两个交点位于直线x=a的两侧。所以,原方程有两个实数根,且一个根大于a,一个根小于a。

二、不同的方法角度

例3

“鸡兔同笼”问题:今有鸡兔同笼,上有35头,下有94足,问鸡兔各几何?

角度1

算术方法

如果每只鸡都用一只脚站着,而每只兔子都用后腿站着,在这种情况下,总脚数只出现了一半,即47只脚。在47这个数里,鸡的头数只数了一次,而兔子的头数却数了两次,从47里减去总的头数35,得到的就是兔子的头数:47-35=12,即有12只兔子。那么鸡就是35-12=23只。

角度2

代数方法

设鸡x只,兔子y只。据题意得

d3295b74ae316f783252048be0c8d30c.png

解得x=23,y=12。

如果用a表示头的总数,用b表示脚的总数,则可得

3d4fc6682f4556af82318ab0706c4bd0.png

这就解释了上述的算术解法。

例4

如图1,线段AB的长为4,C为AB上一动点,分别以AC、BC为斜边在AB的同侧作等腰直角三角形ACD和等腰直角三角形BCE,那么DE长的最小值是 (  )。

20e8e1552853d35bc870d55842a92949.png

图1

角度1

代数方法

转化为求二次函数的最值问题:

设AC=x,则

42950bd2a67a8742c44c764ac11f01d4.png

可得当x=2时,DE的最小值为2。

角度2

几何方法

转化为点到直线的垂线段最短:如图2,分别过点D、E作AB的垂线,垂足分别为点M、N,则DE≥MN=2。

6084fb84ebadd975b485a219ef23a454.png

图2

例5

9ee3593854b8448963fe4086fc1a6e76.png 6f6b4308ba27a936af80b7007f98f33e.png 9f2837b8efa4fae21a3e5775e56d36b3.png

从几何角度思考:

对于(1):如图3所示,如果把等式右边结果中的n(n+1)看着长和宽分别为n、n+1的矩形的面积,则易证。

2304df051508da5714a1babf1e989f7f.png

图3

e2ba1249bb5cd47903858b159c848bb2.png 7069bde7e52c4a412b8f5a52a2f62dba.png

图4

对于(3):如图5所示,把等式右边的

2f7b58c93d066ee899a92fa925b0f09c.png

中的

7ece9bea6e4d9b2b233d8c47091c9030.png

看成长和宽分别为

495d9a95d6656d66d75a8b739158ee85.png

的矩形的面积,从而可得

9d369ae8e4b8e2130313cf7c051b1b1f.png 0a4dd0777410978a33de7bdf4f5ce106.png

图5

从代数角度思考:

(1)和(2)略。

对于(3):将所求的和记为S,根据立方差公式可得:

53a0e1208080a920581ef5eb29e1f759.png

从而可得:

2ba1fdc84714ea44565ffb736aa435ae.png 2ad7a7c93cc43a436e45c719b81c362a.png 69fbe7c383f7391d8b2f89c7c09804bc.png 03d95cb6ee2bddeb8b7528109c69e928.png 3f13b02ec0dabd71a2f8b802ee77d6d4.png

    将上述n个式子相加得:

2a54487c730b55fc71d30f16309ee152.png

从而可得

8f718e56d9c86a95557941349d0051b4.png

三、不同的观察角度

对于例2,如果把x-a看着一个整体,会使解答过程更简单:

如果设 y=x-a,则原方程化为

43c2daba487142ed6a9a8a7b7f95d3b0.png

216d6d544a4515567e1dce622ecde2aa.png 38d267638e648795ec04bf132575d07c.png

因此,不同的观察角度,会影响解题的难易程度。

例6

证明:三角形任意两边之和大于第三边。

如图6,已知△ABC,求证:AB+BC>AC。

978acd0ab2e3a1434ca88a2d9da014fd.png

图6

观察角度1

把AB、BC、AC分别看成△ABC的三边。如图7,延长AB至D,使BD=BC。在△ADC中,根据大角对大边,可得AD>AC,从而可得AB+BC>AC。

331896132af6c3a54385899004d0a76b.png

图7

观察角度2

把AB+BC看着A、C两点之间的折线,根据“两点之间线段最短”可得AB+BC>AC。

例7

证明:等边对等角。

已知:如图8,在△ABC中,AB=AC。

求证:∠B=∠C。

9b37f2e3a3857537da5eeaa03879cd2a.png

图8

观察角度1

由等腰三角形的轴对称性得到启发,通过作辅助线予以证明。

如图9所示是华东师大版初中数学教材给出的证明方法。

8874ac5c0e4649234b65af4dee1e15b0.png

观察角度2

把∠B、∠C分别看成△ABC、△ACB的内角,通过证明△ABC≌△ACB,得出∠B=∠C。

其证明过程如下:

如图8,在△ABC和△ACB中,

70c981d669d155d5f863b70f4cc0e970.png

∴△ABC≌△ACB(S.A.S)。

∴∠B=∠C。

不同的知识角度依赖于知识水平;不同的方法角度依赖于解题经验;不同的观察角度依赖于观察力。较强的解题能力取决于宽广的知识、丰富的解题经验和敏锐的观察力。

11e96728c4ca667c8215ec702a2b8ce7.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值