matlab求随机过程的数学期望,【matlab】MarkDown Letex 编码 之 随机过程及应用(三) - 高斯分布/正态分布的期望和方差...

**Provement of Gaussian Distribution:**

设正态分布概率密度函数是

$$f(x)=\frac{1}{\sqrt{2π}\sigma}*e^{\frac{-(x-u)^2}{2\sigma^2}} $$

于是:

$$\int^{+\infty}_{-\infty} \frac{e^{-(x-u)^2}}{2\sigma^2}dx=(\sqrt {2π})t.\ \ \ \ \ \ (*) $$

积分区域是从负无穷到正无穷.

|| **1.expectation:

对 $(*)$ 式两边对 $u$ 求导:

$$\int^{+\infty}_{-\infty} {e^{\frac {-(x-u)^2}{2\sigma^2}}* \frac{-2(x-u)}{2\sigma^2}}dx=0 $$

约去常数,再两边同乘以 $\frac{\sigma}{\sqrt{2π}}$ 得:

$$\int^{+\infty}_{-\infty} e^{\frac{-(x-u)^2}{2\sigma ^2}}*\frac{-(x-u)}{\sqrt{2π}\sigma} dx=0 $$ or$$\int^{+\infty}_{-\infty} e^{\frac{-(x-u)^2}{2\sigma ^2}}*\frac{x-u}{\sqrt{2π}\sigma} dx=0 $$

把 $x-u$ 拆开,再移项:

$$\int^{+\infty}_{-\infty} e^{\frac{-(x-u)^2}{2\sigma ^2}}*\frac{x}{\sqrt{2π}\sigma} dx$$

$$=\int^{+\infty}_{-\infty} e^{\frac{-(x-u)^2}{2\sigma ^2}}*\frac{u}{\sqrt{2π}\sigma} dx$$

也就是

$$\int^{+\infty}_{-\infty}x*f(x)dx=\int^{+\infty}_{-\infty}u*f(x)dx$$$$=u*1=u $$

到这一步证明了 $expectation$ 就是 $u$.

|| **2.variance

对 $(*)$ 式两边对 $\sigma$ 求导:

$$\int^{+\infty}_{-\infty}\frac{(x-u)^2}{\sigma^3}*e^{\frac{-(x-u)^2}{2\sigma^2}}dx=\sqrt{2π} $$

移项:

$$\int^{+\infty}_{-\infty}\frac{(x-u)^2}{\sqrt{2π}\sigma} *e^{\frac{-(x-u)^2}{2\sigma^2}}dx={\sigma^2}$$

也就是:

$$\int^{+\infty}_{-\infty}(x-u)^2*f(x)dx=\sigma^2 $$

到这一步证明了 $variance$ 就是 $\sigma^2$.

从而 $Gaussian \ \ Distribution $ 得证.

* * 第一

* * 第二

* * 参考Davide Giraudo的方法。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值