从圆锥曲线(特指椭圆、双曲线、抛物线)的定义与标准方程出发,如何去推导与焦点相关的焦半径公式、焦点弦长公式及其相关的结论,进而加以应用.
本文不作特别说明,椭圆、双曲线、抛物线都是针对焦点在 轴上标准方程(其中抛物线考虑标准方程 ), 分别为椭圆或双曲线的左、右焦点, 是抛物线的焦点, 是相应圆锥曲线上的一点.所有的公式推导均以椭圆方程为例,且优先考虑左焦点对应的相关公式.双曲线可以完全类比椭圆的推导过程得到,特殊情况会另外说明.
焦半径是指圆锥曲线上任意一点与焦点的连线段.对于椭圆与双曲线上的任意一点,都对应两条焦半径;对于抛物线上的任意一点,焦半径唯一存在.
设 是椭圆上任意一点,则有
从而焦半径
而 ,所以
其中 为椭圆的离心率.
事实上,在由椭圆的定义推导椭圆方程的过程中,就已经产生了这个式子,设 满足
即
分子有理化得
于是有
(1)(2)两式相加得
即为椭圆上一点 到椭圆左焦点的距离.
于是我们得到椭圆的焦半径公式(I):
同理有双曲线的焦半径公式(I):
当点在双曲线上的不同支上时,绝对值里面式子的正负大家可以自行讨论.
抛物线的焦半径公式可以直接由抛物线的定义得到,即
例1 椭圆 的右焦点为 ,直线 与 轴的交点为 ,在椭圆上存在点 满足线段 的垂直平分线过点 ,则椭圆离心率的取值范围是____.
正确答案是 .
解 设 ,则有 ,即