点到曲线的距离公式_高中数学:焦半径公式及其应用

本文详细探讨了椭圆、双曲线、抛物线的焦半径公式,从定义出发推导公式,并阐述了焦半径与焦点弦的关系。通过实例和推论,展示了如何运用这些公式解决相关问题,包括焦点弦长公式和焦点弦被焦点分成的两段线段的调和平均数为定值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

从圆锥曲线(特指椭圆、双曲线、抛物线)的定义与标准方程出发,如何去推导与焦点相关的焦半径公式、焦点弦长公式及其相关的结论,进而加以应用.

本文不作特别说明,椭圆、双曲线、抛物线都是针对焦点在 4b45a005ed94bae74455f33cc0496e0d.png 轴上标准方程(其中抛物线考虑标准方程 4add055fce5379f30cf28d321489ce2f.png ), 264082821546ccb3536e3fc3cbef0982.png 分别为椭圆或双曲线的左、右焦点, a8163bc3807d3d32ba98b2d9b73abb19.png 是抛物线的焦点, 26840e92c2b9e34aafb1da7e1a1d9f5a.png 是相应圆锥曲线上的一点.所有的公式推导均以椭圆方程为例,且优先考虑左焦点对应的相关公式.双曲线可以完全类比椭圆的推导过程得到,特殊情况会另外说明.

焦半径是指圆锥曲线上任意一点与焦点的连线段.对于椭圆与双曲线上的任意一点,都对应两条焦半径;对于抛物线上的任意一点,焦半径唯一存在.

设 26840e92c2b9e34aafb1da7e1a1d9f5a.png 是椭圆上任意一点,则有

685c1526c61338dc4a79dfb68ccda1ee.png

从而焦半径

69fb453dd79827e1ac3ec967defc6a52.png

而 10ea51a752828cefab24a279353db8cf.png ,所以

c032bf36dd2361a028e0a33b63a975aa.png

其中 cae59a461231e64bb67a76f3351f7897.png 为椭圆的离心率.

9a1a67e30455fd8c3a73109f40fa602f.png

事实上,在由椭圆的定义推导椭圆方程的过程中,就已经产生了这个式子,设 f4b2244b5e42da1ae23720b1e6673054.png 满足

8966b82c9948e64d2dddd51c92dcb779.png

d473331189e9dc062cf2dc36ce29d8c2.png

分子有理化得

a25d8160afdfdfcebf070223a155fd78.png

于是有

bfbbbc297bd7e751c81cbb553d79c6cf.png

(1)(2)两式相加得

dec654e6bd5d24508e6f961a7a80cedf.png

即为椭圆上一点 f4b2244b5e42da1ae23720b1e6673054.png 到椭圆左焦点的距离.

于是我们得到椭圆的焦半径公式(I):

4ebe4563f8efe337e692e6ee2cbd4888.png

同理有双曲线的焦半径公式(I)

2313b4887aa785e509162c1e8202d805.png

当点在双曲线上的不同支上时,绝对值里面式子的正负大家可以自行讨论.

抛物线的焦半径公式可以直接由抛物线的定义得到,即

e1334e70f5f2b2e2eded054abd040581.png

例1 椭圆 a6d8b8b0a2345ef99a9f09dff39dd8df.png 的右焦点为 4e98451985d5c318a607b856880117ee.png ,直线 1787b358645f122aa9eff75112772e73.png 与 4b45a005ed94bae74455f33cc0496e0d.png 轴的交点为 f360c9449def480af9f99c8717f55cab.png ,在椭圆上存在点 910ff77981544193c8fab117610c00de.png 满足线段 276bb7c292b6831ff90861a9fd3186d4.png 的垂直平分线过点 4e98451985d5c318a607b856880117ee.png ,则椭圆离心率的取值范围是____.

正确答案是 27d4c3da79f2ab4be862d187287cf5b5.png .

 设 26840e92c2b9e34aafb1da7e1a1d9f5a.png ,则有 c062a26b279cfac1af4ebc6511d13cce.png ,即

5135eb0c7fe18c073f5898858d0d666f.png

解得

d823d4de6fe37898a3722199e0a1a238.png

又因为 10ea51a752828cefab24a279353db8cf.png ,所以有

89bb86c3ca51988bbe0ae4a4f8d34dbd.png

两边同除 585850d67e5f0bfdb538e19aed8af047.png 可解得

9ea313267a7e4d89a9897b7a7dba7308.png

由椭圆的焦半径公式(I)知,已知椭圆上一点的横坐标,就很容易求出椭圆的焦半径长,但有时,我们知道的不是横坐标的值,而是焦半径与 4b45a005ed94bae74455f33cc0496e0d.png 轴形成的角度,我们可以从上面的焦半径公式(I)出发去推导由焦半径与 4b45a005ed94bae74455f33cc0496e0d.png 轴正半轴所成的角 acbdb5d12908d1047477edb7eb6e9c2d.png 对应的焦半径公式.

设 2a4af9518ffc150a3119deb3d3fc3046.png 与 4b45a005ed94bae74455f33cc0496e0d.png 轴正半轴形成的角度为 acbdb5d12908d1047477edb7eb6e9c2d.png ,则有

fbc7332328a0bc0c77d22380e3ae4fc1.png

整理得 608538c45772a707a0f611afa78cf15c.png ,于是有

18dd9fff59dd4afc5ddb1699db09d71f.png

解得

aad22bf90cf82b13fd0b8d7899d5dc9e.png

同理可以推得右焦点对应的焦半径公式

cdb3757396f997ec4e6d4291e0f4de11.png

其中, 64335423508739e66d7cb6b18ef7378d.png 是焦半径 41a963908a133aa407814160ab3c6667.png 与 4b45a005ed94bae74455f33cc0496e0d.png 轴正半轴所成的角,注意,同一个点与左焦点与右焦点连线形成的焦半径与 4b45a005ed94bae74455f33cc0496e0d.png 轴正半轴所成的角不是同一个角,这是与焦半径公式(I)很不相同的地方,如图:

09ffe299692e7e1250a151259476382c.png

于是我们得到椭圆的焦半径公式(II)

1140373d6743cb2224d1e4301a95618e.png

其中 52f8195ef42ee3c083bdf3f8a81d31e3.png 为焦半径 f050f6df1a9704bc96f63980e14b81db.png 与 4b45a005ed94bae74455f33cc0496e0d.png 轴正半轴所成的角.

对于双曲线来说,与椭圆类似可以得到双曲线的焦半径公式(II),需要注意的是,当双曲线上的点在双曲线的不同支上时,焦半径公式(I)中绝对值的正负不同,所以需要分别讨论.双曲线的焦半径公式(II)

当 910ff77981544193c8fab117610c00de.png 在双曲线的左支时,有

06d55f872bd0ab34cbd81ee26d5524e9.png

当 910ff77981544193c8fab117610c00de.png 在双曲线的右支时,有

127c4c7bc6a2e670c809444ade1fd153.png

其中 52f8195ef42ee3c083bdf3f8a81d31e3.png 为焦半径 f050f6df1a9704bc96f63980e14b81db.png 与 4b45a005ed94bae74455f33cc0496e0d.png 轴正半轴所成的角.

抛物线的焦半径公式为:

7dbe58251c608008c72b00c6940a8bb3.png

其中 acbdb5d12908d1047477edb7eb6e9c2d.png 为焦半径 2a4af9518ffc150a3119deb3d3fc3046.png 与 4b45a005ed94bae74455f33cc0496e0d.png 轴正半轴所成的角.

椭圆的焦半径公式(II)有两个常用的推论:

推论1 椭圆的焦点弦长公式:

99c2dcae02cd14407011773053d5a8e1.png

其中 c66396ce243f8c2de9239a4bbb4e5038.png 为椭圆的焦点弦, c66396ce243f8c2de9239a4bbb4e5038.png 的倾斜角为 acbdb5d12908d1047477edb7eb6e9c2d.png .

圆锥曲线的焦点弦是指过某一焦点的直线与该圆锥曲线相交得到的两个交点之间的线段.当该弦与 4b45a005ed94bae74455f33cc0496e0d.png 轴(椭圆的长轴,双曲线的实轴)垂直时,得到的弦我们称为通径.因为焦半径公式(II)是与角度相关的公式,所以我们很容易从它得到椭圆的焦点弦长公式.

证明 设 c66396ce243f8c2de9239a4bbb4e5038.png 是过椭圆左焦点 4e98451985d5c318a607b856880117ee.png 的焦点弦, c66396ce243f8c2de9239a4bbb4e5038.png 的倾斜角为 acbdb5d12908d1047477edb7eb6e9c2d.png ,不妨设 f360c9449def480af9f99c8717f55cab.png 点在 4b45a005ed94bae74455f33cc0496e0d.png 轴上方,如图:

d4cbcb4964fcbe3796cdb03aa038b79e.png

由焦半径公式(II)知

39e5e0a89a2299d0443cc57d98cf0320.png

于是

2b48e17afd26796d438c856bc2c3a30b.png

这就是椭圆的焦点弦长公式,容易知道,对于经过椭圆右焦点的弦,此公式同样适用.

事实上,对于双曲线,同样有推论1,即双曲线的焦点弦长公式:

4fc8c584ec46cc641e75c08b740c150f.png

其中 c66396ce243f8c2de9239a4bbb4e5038.png 为双曲线的焦点弦, c66396ce243f8c2de9239a4bbb4e5038.png 的倾斜角为 acbdb5d12908d1047477edb7eb6e9c2d.png .不论 96edc7554e0227a1ce403dff90b1e902.png 两点在双曲线的同支还是异支上,都有这个公式成立,只是绝对值中的式子正负有所不同.

抛物线的焦点弦长公式更为简单,即

ddca6baacbbb657a34dec89f3e2ba5df.png

其中 c66396ce243f8c2de9239a4bbb4e5038.png 是抛物线的焦点弦, c66396ce243f8c2de9239a4bbb4e5038.png 的倾斜角为 acbdb5d12908d1047477edb7eb6e9c2d.png .

例2 椭圆 9988e31ab2c58bbc4c80b1bbadcdb52a.png , 12864dd44ab678a9bb286948091e0592.png 为椭圆上四个不同的点, 336c1724c1647c4828c7a6319cdcb65e.png 都不和 4b45a005ed94bae74455f33cc0496e0d.png 轴垂直,且分别过 8e8991aeaee8265d6ce34529c8f1fc19.png , 1ebaeeb4b8a3dc2ec5732a053db4851a.png ,求证: 762e522da36b47d37740d1def765c739.png 为定值.

 设 7152605189d17b0c237a280b1fd73d05.png 的倾斜角为 acbdb5d12908d1047477edb7eb6e9c2d.png ,则 460ae09af7de05478b50df6b00d9f010.png 的倾斜角为 d1751edaca35c9b2ef71493af0f4b0e2.png ,则由焦点弦长公式知

943cb0e5ec52867f15edbd2a9128f3fc.png

64901f38b373c24795b2ed0206924936.png

所以

4b2480e961920e55f7b6fe5303f6eac9.png

为定值.

推论2 椭圆的焦点弦被焦点所分成的两段线段长的调和平均数为定值(即焦半径的倒数和为定值).

证明 由焦半径公式(I)知

0cc3b39c08ee63244b2feb4e7bc4a50e.png

于是我们知道 ca46c3c59981befcc745db160c3a4351.png 与 e7b718f6027994247d7418849274a291.png 的调和平均数为定值,即

8c0a43e07c8771d1125a84d0a5091581.png

这个定值就是半通径长 9c345f3d4a4f101f659d3a17039c0e35.png ,由均值不等式易知椭圆的所有焦点弦中,通径长最短.

几道练习:

练习1 椭圆 87a57f2dc4461299845bda8a533f592e.png 的焦点为 a43f81a30b65d491527e1296305b1b1c.png 和 249a8f6279345cf2bdc526b464394d29.png ,点 910ff77981544193c8fab117610c00de.png 在椭圆上,如果线段 d45d278e65f84bc692432d0a4f2fdddb.png 的中点在 4fbeddb79ed9ce174b2d65bf0a1a8231.png 轴上,求 10d733cf815e95863487d9c3e7ac1c47.png 的值.

练习2 椭圆 f8d8f4de68015762bfd63fa9ed115149.png 的左右焦点分别为 8e8991aeaee8265d6ce34529c8f1fc19.png ,过 a43f81a30b65d491527e1296305b1b1c.png 的直线交椭圆于 0fdd5fcc22c1cf438e9178e6566b0d1e.png 两点,过 249a8f6279345cf2bdc526b464394d29.png 的直线交椭圆于 5e140f54bc06dc47f3447fc71974631f.png 两点, 5ba16165ab9089b1428e8a04cfebb4ae.png ,求四边形 4a1ae38fb9e3e07fff090a578d57d85b.png 面积的取值范围.

答案

练习1  cebc91e053f633f60a92c007aa5406bd.png .

提示 设 4872561376d1b731dd71675e9973d23b.png ,则 bb18578845b670ef2ae2cab6e38a3bf0.png ,于是

297e0c69e4d0cf380d5a44e9e61189d4.png

于是 ae92b7a10fda5ab2bd556c3c4414e02a.png .

练习2  0bf2f8a07aeb7979754e5394fb9583e8.png .

提示 设 c66396ce243f8c2de9239a4bbb4e5038.png 的倾斜角为 acbdb5d12908d1047477edb7eb6e9c2d.png ,则 a7daa6c7657ca8f14193535d8712320e.png 的倾斜角为 d1751edaca35c9b2ef71493af0f4b0e2.png ,于是

cacecfc207d8579504ccf0e83cc85ec4.png

四边形 4a1ae38fb9e3e07fff090a578d57d85b.png 的面积

44fa0880c1cd4b4cf014b2410858b99c.png

练习3

ca51ab13ede7c0f14e56a74099d66181.png

3c2618352925d0fc536b3ae0a2c22935.png

c67b056e16c22fa50fb2abafa8448428.png

备注1 椭圆的焦半径公式(I)是从椭圆的第一定义向第二定义过渡的重要桥梁,可以通过椭圆的焦半径公式(I)去发掘椭圆的第二定义.由焦半径公式(I)知

1219fdfcc491d51d500b47c82c65e209.png

设直线 c579a03989d19b6c8f89936fd1bd7fc6.png : 33da4a53c91063afde83d9f303ccacc9.png ,称为椭圆的左准线,记点 910ff77981544193c8fab117610c00de.png 到 c579a03989d19b6c8f89936fd1bd7fc6.png 的距离为 6479f9b67932db1a3d18bc92ad48c3a9.png ,则有

5409055fdbd67ca243cb3ef9a6afde80.png

即椭圆上任一点到椭圆左焦点的距离与到左准线的距离的比为定值,这个值为椭圆的离心率 cae59a461231e64bb67a76f3351f7897.png .同样地有椭圆的右准线

0e8b4b1c68794346ab9a71eb58c39017.png

于是有,椭圆上的任意点到椭圆的焦点与对应准线的距离的比值为定值 cae59a461231e64bb67a76f3351f7897.png .对于双曲线也有类似的结论,双曲线的准线方程为

42d6ff9e0bc68fab16f98114354f2a7a.png

双曲线上任意点到焦点的距离与到对应准线的距离的比也为定值 cae59a461231e64bb67a76f3351f7897.png ,即为双曲线的离心率.

同时,平面上到定点 4e98451985d5c318a607b856880117ee.png 与到定直线 c579a03989d19b6c8f89936fd1bd7fc6.png (其中 78e46f0314e9e23c1031015b3b645cc5.png )的距离比为定值 cae59a461231e64bb67a76f3351f7897.png (其中 9e2457ec4e820c3888ffcd3e254a0314.png )的轨迹为椭圆、双曲线或抛物线,取决于 cae59a461231e64bb67a76f3351f7897.png 的大小.当 96cd5a1fb8319c72f8d3ee8a9624c6d4.png 时为椭圆,当 c92db51fde54e21ae31bffad6f45d30c.png 时为抛物线,当 a52a2a600836b023032d7d587292830e.png 时为双曲线.

从而有圆锥曲线的统一定义:平面上到一个定点的距离与到一条定直线(其中定点不在直线上)的距离的比为定值 cae59a461231e64bb67a76f3351f7897.png 的点的轨迹为圆锥曲线, c92db51fde54e21ae31bffad6f45d30c.png 时这个定义就是抛物线的定义,当 cae59a461231e64bb67a76f3351f7897.png 的范围在 4c0fd4f21ae99468e3d527d4d8d990e0.png 与 a356de78e86c0f89ad6302c5b6626261.png 上时,对应的定义被称为椭圆与双曲线的第二定义

备注2 由椭圆的焦半径公式(II)很容易得到椭圆的极坐标方程:

以椭圆的一个焦点 4e98451985d5c318a607b856880117ee.png 为极点,以 4b45a005ed94bae74455f33cc0496e0d.png 轴正半轴方向为极轴方向建立极坐标系,

9be847ec95f613ccb24a31a3ea9baec8.png

则椭圆上任意一点 910ff77981544193c8fab117610c00de.png 的坐标 9101509447fead3dd12308778be56122.png 满足:

26fb7027a6c647e10bb4268ce21e5728.png

这就是椭圆的极坐标方程,注意如果以椭圆的右焦点为极点, 4b45a005ed94bae74455f33cc0496e0d.png 轴正方向为极轴建立极坐标系,得到的极坐标方程为

cfdea3afea699152511070d99f69b59f.png

▍ 来源:综合网络

▍ 编辑:Wordwuli

▍ 声明:如有侵权,请联系删除;若需转载,请注明出处。

▍ 提示:①更多精彩内容,请点击文章标题下方的公众号名称查看;②进入公众号后,发送关键词给我,我会立即回复相关内容给您。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值