以下属于4nf的分解为_奇异值分解(singular value decomposition, SVD)梳理

本文详细介绍了奇异值分解(SVD),包括特征值和特征向量的概念,奇异值分解的定义及其几何意义,并探讨了SVD在数据压缩和降维等方面的应用。
摘要由CSDN通过智能技术生成

1 特征值和特征向量

1.1 特征值和特征向量的定义:设A为元素属于数域P的n阶矩阵,如果存在属于P中的数λ与元素属于 数域P的n维非零向量α,使得

Aα = λα

则称λ为特征值,α为特征向量

1.2 特征值和特征方程的求法:n阶矩阵A的特征方程为:|λE - A| = 0。根据该方程求出矩阵A的所有特征值λ,再根据每个特征值

,求出特征向量α

1.3 特征分解

备注:当n阶矩阵A可对角化(对角矩阵为

)的充分必要条件是A有n个线性无关的非零向量。

的列向量为矩阵A的特征向量。
为线性无关的非零向量

,λ为矩阵A的特征值

1.4 特例:矩阵A为实对称矩阵

当n阶矩阵为实对称矩阵时,A有n个相性无关的非零向量,且A的特征向量两两正交(內积=0)。A的特征向量构成的矩阵

为正交矩阵,用
表示。

正交矩阵满足:

2 奇异值分解的定义

2.1 奇异值分解

SVD也是对矩阵进行分解,不同于特征分解的是:矩阵A不是方阵,维数为

。既然实对称矩阵有很好的性质,可以考虑将矩阵
转化为实对称矩阵

为对称矩阵,则

其中

为正交矩阵,
为线性无关的非零向量,且两两正交,构成一组正交基;
为矩阵A的特征值

性质1:

为一组正交基,则
也是一组正交基

证:

当i = j 时,求

的长度:
(正交矩阵V的行(列)向量组是两两正交的单位向量组)

定义

的单位化向量:

,其中
为矩阵
的列向量(实对称矩阵
的特征向量)

,其中
的列向列,
的对角阵,
也为一组正交基,则
也为正交矩阵

根据

的对角阵

得到

,

对于任意的矩阵A的奇异值分解,其左奇异矩阵

一定为
的特征向量;右奇异矩阵
一定为
的特征向量;
特征值开根号。

2.2 奇异值分解的几何意义

通过2X2矩阵进行说明。

为正交单位向量
,则向量
正交
分别表示
的单位向量。
分别表示单位向量
的长度。
也是矩阵的特征值。

57f566167e48e087570c7df6727c101c.png

举例如下:

m = matrix(c(1,1,-2,2),ncol=2)

f23df3000678b64e934e207980160e29.png
svdResults = svd(m)

fe531bc239255c8bc5e249901881ed69.png

f5474616c77d50c76e3aad76b3f38b9a.png

先对单位正交向量进行拉伸,再进行旋转

参考:奇异值的几何意义和物理意义

2.3 奇异值分解的应用

2.3.1 数据压缩

仅存储前k列

2.3.2 降维

行数压缩

列数压缩
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值