特征值与特征向量_线性代数的本质10 特征向量和特征值

d465293a7dc8d09f34a32eb778f45410.png

10 特征向量和特征值

【熟肉】线性代数的本质 - 10 - 特征向量与特征值_哔哩哔哩 (゜-゜)つロ 干杯~-bilibili​www.bilibili.com
463b8d1cd22af713312668456ba2dd25.png

理解特征值和特征向量,需要对之前的很多概念有几何直观的理解,包括线性变换、行列式、线性方程组和基变换。对特征值和特征向量理解偏弱的原因,往往是对以上概念并不清楚。

二维空间中的一个线性变换将基向量i 变换为

,基向量
j 变换为
。如果用矩阵来表达的话就是
。考虑一个特殊的向量以及这个向量张成的一维空间——直线,大部分向量在变换中都会离开了自己张成的空间,而如果向量经过变换后仍能落在这条直线上,就意味着线性变换对它的作用,仅仅是拉伸或者压缩,就如同一个标量一样。

5058789dc5c86081c8dd0f7211eee094.png

在本例中,向量i 所在的方向就是这样一个特殊的方向,它张成的空间是x轴。矩阵对它的线性变换作用,使得向量i 变成了原来的三倍,但仍然在x轴上。x轴上的其他向量也都只是被拉伸为原来的三倍。

1fba718d74bbd56db41d3e45e2fa9587.png

另一个略显隐蔽的向量是

,他在变换后也留在自己张成的空间里,被拉伸为原长的两倍。

b850fd1f6bef12c82fe3a0bc39d2bf61.png

以上就是所有拥有“留在自己张成的空间”这个性质的特殊向量。其他的向量,在变换中都有或多或少的旋转。

这些向量就被称为这个线性变换的特征向量,衡量特征向量在变换中拉伸或压缩的比例因子就是它对应的特征值。如果特征向量为负值,比如-1/2,意味着这个向量被反向,并且压缩到原来的1/2。但它仍旧停留在自身张成的直线上,没有发生旋转。

考虑一个三维空间中的旋转变换。如果能找到该变换的特征向量,那你找到的就是旋转轴。把一个三维旋转看成绕某个轴旋转一定角度,比考虑相应的3×3矩阵直观得多。在这种旋转变换中,特征值为1,因为空间只发生旋转,并不发生拉伸和压缩。

线性变换对应的矩阵,其列向量就是基向量变换后的坐标。但是理解线性变换作用的关键,往往较少依赖于特定的坐标系。最好的方法是求出它的特征向量和特征值。

矩阵、特征向量和特征值的关系为AvvA是矩阵,v是特征向量,λ是该特征向量对应的特征值。特征向量经过矩阵变换后方向不变但被伸缩了λ倍。求解特征值和特征向量就是求解满足于上式的解。

Av=(λI )v

Av-(λI )v=0

(AI )v=0

得到了一个新的矩阵AI,我们的目标变成寻找一个非零的向量v,使得这个新矩阵与之相乘的结果为零向量。当且仅当这个新矩阵所代表的线性变换将空间压缩到更低维度的时候,这个方程有非零解。而这个矩阵所对应的行列式等于0。求解的过程就变为找到一个λ使得行列式det(AI )=0。

例如前面提到的矩阵

,求解其特征值,则转变为求解行列式方程
,求得λ=2,3,代入可求得特征向量,例如代入λ=2,
,求解得到特征向量

二维线性变换不一定有特征值,比如90度逆时针旋转变换,所有的向量都发生了旋转,没有向量能够保持在其张成空间。逆时针旋转对应矩阵为

,代入计算特征值可得
,方程的解只有虚数i和-i。
与虚数i相乘在复平面代表着90度旋转。这里可以看看另一篇笔记的部分内容。 我们从虚数i开始说起,如果你只把它解释为-1的平方根,是对理解和应用没有太大帮助的,因为这只是定义而已。对于负数而言,我们可以将乘以-1当成一种操作,操作的结果就是在实轴上实现“反向”,如果乘以
,就是连续进行两次"反向"操作,则变换回原位置。从这种解释出发,如果存在一个数
,它的平方等于-1,则代表着经过两次
操作,可以实现“反向”,因此可以想到
的几何解释就是旋转90度(
是逆时针旋转,
为顺时针旋转)。经过两次90度旋转就会实现反向,其数学表达就是

e77e61279ebf65c3a81f398b6988e52d.png

更多关于复数和欧拉公式的内容,可以参考这篇笔记:

三少爷的贱男春:G.Strang的微分方程和线性代数(1.3)

剪切变换对应的矩阵为

,行列式方程
,得唯一解λ=1,这与几何上相一致,只有x轴未发生方向变化,同时缩放比为1。

有时候只有一个特征值,但特征向量不止在一条直线上。例如,拉伸变换

,唯一的特征值为2,但平面内的向量都是其特征向量。

43a83e297948ce0f468d4bbf96c87806.png

如果基向量是特征向量会发生什么?

比如,向量i变换变为原来的(-1)倍,而向量j变为原来的两倍,则变换对应的矩阵是

,它们变换的倍数就是特征值-1和2,这个矩阵是一个
对角阵

除了对角元素,其它元素均为0的矩阵被称为对角阵。对于对角阵,所有的基向量就是其特征向量,而对角元素就是它们所属的特征值。对角阵有很多特点,例如矩阵方幂很容易计算,

如果矩阵的特征向量足够多,可以张成整个空间,那么可以通过变换坐标系,使得这些特征向量成为基向量。

矩阵

,取其特征向量作为列向量,构建基变换矩阵
,在原矩阵右侧乘上基变换矩阵,左侧乘上逆矩阵,
。这个矩阵仍旧描述的是同一个线性变换,但是是从新的基向量构成的坐标系的角度来看的。

784eda79953e5fc48607fc0f17103f28.png

这样做的意义在于,这个矩阵会是对角阵,且对角元就是对应的特征值。

它所处的坐标系的基向量在该线性变换中只进行了缩放。

一组特征向量构成的基向量的集合,称为一组“特征基”。计算矩阵

的100次幂,可以先变换到特征基,在那个坐标系中对对角阵计算100次幂,然后再转换回标准坐标系。

并不是所有的变换都可以完成以上过程,例如剪切变换,它的特征向量不够多,不能张成整个空间。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值