卷积神经网络最后的结果_使用卷积神经网络(CNN)对手写数字数据集mnist进行识别的结果与代码实现...

结果如下,准确率目前最高可以达到99.32%,应该还可以继续提高,提高会继续更新。

aa05e18005dabece70da7a0e1a00f7a4.png

示例代码:

首先导入所需的模块

import time
from keras.datasets import mnist
from keras.utils import np_utils
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt 
np.random.seed(10)

加载手写数据,如果电脑里没有数据集的话,会自动从服务器上下载,但是服务器在国外,所以速度会比较慢

(x_Train, y_Train), (x_Test, y_Test) = mnist.load_data()

为了对mnist数据集更加了解,统计多维数组所有元素出现次数

np.bincount(y_Test)

结果如下,array中的数字表示从0到9出现的次数。

array([ 980, 1135, 1032, 1010,  982,  892,  958, 1028,  974, 1009],
      dtype=int64)

#画出测试集的0~9柱形图

rects = plt.bar(range(len(np.bincount(y_Test))), np.bincount(y_Test),fc='b')  
for rect in rects:  
    height = rect.get_height()  
    plt.text(rect.get_x() + rect.get_width() / 2, height, str(height), ha='center', va='bottom')  
plt.show()

babbd37e3591e61057d12d9beeeadee1.png

将featrues(数字图像特征)转换为四维矩阵。60000x28x28x1

x_Train4D=x_Train.reshape(x_Train.shape[0],28,28,1).astype('float32')
x_Test4D=x_Test.reshape(x_Test.shape[0],28,28,1).astype('float32')

归一化featyres数据与标签One-Hot Encoding转换

x_Train4D_normalize = x_Train4D / 255
x_Test4D_normalize = x_Test4D / 255

y_TrainOneHot = np_utils.to_categorical(y_Train)
y_TestOneHot = np_utils.to_categorical(y_Test)

接下来建立卷积神经网络模型,导入所需的模块

from keras.models import Sequential
from keras.layers import Dense,Dropout,Flatten,Conv2D,MaxPooling2D

建立Keras的模型称 “model”,后续用model.add()的方法 ,卷积神经网络的各个层加入到模型中

model = Sequential()

model.add(Conv2D(filters=16,
                 kernel_size=(5,5),
                 padding='same',
                 input_shape=(28,28,1), 
                 activation='relu'))

""" 建立池化层1
参数pool_size=(2, 2),执行第1次缩减采样,将16个28x28的图像缩小为16个14x14的图像
"""
model.add(MaxPooling2D(pool_size=(2, 2)))

""" 建立卷积层2
执行第2次卷积运算,将原来的16个滤镜变为36个滤镜,input_shape=14x14的36个图像
"""
model.add(Conv2D(filters=36,
                 kernel_size=(5,5),
                 padding='same',
                 activation='relu'))

""" 建立池化层2
参数pool_size=(2, 2),执行第2次缩减采样,将36个14x14的图像缩小为36个7x7的图像
"""
model.add(MaxPooling2D(pool_size=(2, 2)))

#加入Dropout功能避免过度拟合
model.add(Dropout(0.25))

"""  建立平坦层 
36*7*7 = 1764个神经元
"""
model.add(Flatten()) 

"""  建立隐藏层 """
model.add(Dense(128, activation='relu'))

#加入Dropout功能避免过度拟合
model.add(Dropout(0.5))

"""  建立输出层 """
model.add(Dense(10,activation='softmax'))

查看模型摘要

print(model.summary())

各个阶段的参数个数和总的参数个数都可以从中看到

_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
conv2d_1 (Conv2D)            (None, 28, 28, 16)        416       
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 14, 14, 16)        0         
_________________________________________________________________
conv2d_2 (Conv2D)            (None, 14, 14, 36)        14436     
_________________________________________________________________
max_pooling2d_2 (MaxPooling2 (None, 7, 7, 36)          0         
_________________________________________________________________
dropout_1 (Dropout)          (None, 7, 7, 36)          0         
_________________________________________________________________
flatten_1 (Flatten)          (None, 1764)              0         
_________________________________________________________________
dense_1 (Dense)              (None, 128)               225920    
_________________________________________________________________
dropout_2 (Dropout)          (None, 128)               0         
_________________________________________________________________
dense_2 (Dense)              (None, 10)                1290      
=================================================================
Total params: 242,062
Trainable params: 242,062
Non-trainable params: 0
_________________________________________________________________
None

训练模型

model.compile(loss='categorical_crossentropy',
              optimizer='adam',metrics=['accuracy']) 

开始执行10个训练周期 epochs=10

t1=time.time()
train_history=model.fit(x=x_Train4D_normalize, 
                        y=y_TrainOneHot,validation_split=0.2, 
                        epochs=10, batch_size=300,verbose=2)
t2=time.time()
CNNfit = float(t2-t1)
print("Time taken: {} seconds".format(CNNfit))

结果如下:

Train on 48000 samples, validate on 12000 samples
Epoch 1/10
2019-03-25 19:55:06.320701: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1432] Found device 0 with properties: 
name: GeForce GTX 950M major: 5 minor: 0 memoryClockRate(GHz): 1.124
pciBusID: 0000:01:00.0
totalMemory: 2.00GiB freeMemory: 1.64GiB
2019-03-25 19:55:06.335858: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1511] Adding visible gpu devices: 0
2019-03-25 19:55:19.677015: I tensorflow/core/common_runtime/gpu/gpu_device.cc:982] Device interconnect StreamExecutor with strength 1 edge matrix:
2019-03-25 19:55:19.677434: I tensorflow/core/common_runtime/gpu/gpu_device.cc:988]      0 
2019-03-25 19:55:19.677687: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1001] 0:   N 
2019-03-25 19:55:19.742882: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 1395 MB memory) -> physical GPU (device: 0, name: GeForce GTX 950M, pci bus id: 0000:01:00.0, compute capability: 5.0)
 - 33s - loss: 0.4897 - acc: 0.8478 - val_loss: 0.0961 - val_acc: 0.9726
Epoch 2/10
 - 6s - loss: 0.1406 - acc: 0.9586 - val_loss: 0.0632 - val_acc: 0.9801
Epoch 3/10
 - 6s - loss: 0.1022 - acc: 0.9693 - val_loss: 0.0521 - val_acc: 0.9832
Epoch 4/10
 - 6s - loss: 0.0829 - acc: 0.9756 - val_loss: 0.0456 - val_acc: 0.9861
Epoch 5/10
 - 6s - loss: 0.0706 - acc: 0.9779 - val_loss: 0.0396 - val_acc: 0.9878
Epoch 6/10
 - 6s - loss: 0.0632 - acc: 0.9811 - val_loss: 0.0397 - val_acc: 0.9879
Epoch 7/10
 - 6s - loss: 0.0559 - acc: 0.9827 - val_loss: 0.0445 - val_acc: 0.9870
Epoch 8/10
 - 6s - loss: 0.0513 - acc: 0.9841 - val_loss: 0.0335 - val_acc: 0.9900
Epoch 9/10
 - 6s - loss: 0.0450 - acc: 0.9861 - val_loss: 0.0338 - val_acc: 0.9906
Epoch 10/10
 - 6s - loss: 0.0419 - acc: 0.9875 - val_loss: 0.0337 - val_acc: 0.9901
Time taken: 89.0451385974884 seconds

对准确率与误差进行可视化

import matplotlib.pyplot as plt
def show_train_history(train_acc,test_acc):
    plt.plot(train_history.history[train_acc])
    plt.plot(train_history.history[test_acc])
    plt.title('Train History')
    plt.ylabel('Accuracy')
    plt.xlabel('Epoch')
    plt.legend(['train', 'test'], loc='upper left')
    plt.show()

show_train_history('acc','val_acc')

show_train_history('loss','val_loss')

8a8fe7cd21c5541ad3d4b523f6d524f1.png

351b20145e7f4e1a2f993d1aaa0ae2db.png

评估模型的准确率

scores = model.evaluate(x_Test4D_normalize , y_TestOneHot)
print("accuracy=", scores[1])

结果如下(结果会有略微差异),本次准确率达到99.2%。

   32/10000 [..............................] - ETA: 1:32
  448/10000 [>.............................] - ETA: 7s  
  896/10000 [=>............................] - ETA: 4s
 1248/10000 [==>...........................] - ETA: 3s
 1632/10000 [===>..........................] - ETA: 2s
 2112/10000 [=====>........................] - ETA: 2s
 2624/10000 [======>.......................] - ETA: 1s
 3136/10000 [========>.....................] - ETA: 1s
 3648/10000 [=========>....................] - ETA: 1s
 4128/10000 [===========>..................] - ETA: 1s
 4640/10000 [============>.................] - ETA: 0s
 5120/10000 [==============>...............] - ETA: 0s
 5600/10000 [===============>..............] - ETA: 0s
 6112/10000 [=================>............] - ETA: 0s
 6624/10000 [==================>...........] - ETA: 0s
 7040/10000 [====================>.........] - ETA: 0s
 7520/10000 [=====================>........] - ETA: 0s
 7968/10000 [======================>.......] - ETA: 0s
 8448/10000 [========================>.....] - ETA: 0s
 8960/10000 [=========================>....] - ETA: 0s
 9472/10000 [===========================>..] - ETA: 0s
 9920/10000 [============================>.] - ETA: 0s
10000/10000 [==============================] - 1s 142us/step
accuracy= 0.992

对测试集预测结果

prediction=model.predict_classes(x_Test4D_normalize)
prediction[:10]

结果如下:

array([7, 2, 1, 0, 4, 1, 4, 9, 5, 9], dtype=int64)

查看预测结果

def plot_images_labels_prediction(images,labels,prediction,idx,num=10):
    fig = plt.gcf()
    fig.set_size_inches(12, 14)
    if num>25: num=25 
    for i in range(0, num):
        ax=plt.subplot(5,5, 1+i)
        ax.imshow(images[idx], cmap='binary')

        ax.set_title("label=" +str(labels[idx])+
                     ",predict="+str(prediction[idx])
                     ,fontsize=10) 
        
        ax.set_xticks([]);ax.set_yticks([])        
        idx+=1 
    plt.show()

plot_images_labels_prediction(x_Test,y_Test,prediction,idx=0)

4047c704dd86229d06853b933b4e5910.png

建立混淆矩阵

import pandas as pd
pd.crosstab(y_Test,prediction,
            rownames=['label'],colnames=['predict'])

结果如下:

predict    0     1     2     3    4    5    6     7    8    9
label                                                        
0        976     1     0     0    0    0    2     1    0    0
1          0  1131     1     0    0    1    1     1    0    0
2          2     0  1027     0    0    0    0     2    1    0
3          0     0     0  1002    0    3    0     3    2    0
4          0     0     0     0  977    0    1     0    1    3
5          1     0     0     4    0  884    2     0    0    1
6          4     2     0     0    2    1  949     0    0    0
7          0     1     2     1    0    0    0  1021    1    2
8          2     1     3     2    1    1    0     2  959    3
9          0     3     0     2    6    2    0     2    0  994

从混淆矩阵上看到有一个标签是5的而预测为0,查看标签是5的而预测为0的图片到底是什么样子的。

df = pd.DataFrame({'label':y_Test, 'predict':prediction})
df[(df.label==5)&(df.predict==0)]
plot_images_labels_prediction(x_Test,y_Test
                              ,prediction,idx=3558,num=1)

1915ceb519dddd3d8c390006e56e7996.png

从图片上看这个5写得的确很奇怪,我自己看的话也很大可能分不出写得是5还是0。

其他的结果可以参考该代码进行修改即可。

关于SVM识别在这里

xxxx:使用支持向量机(SVM)对手写数字数据集mnist进行识别(准确率可达98.57%)​zhuanlan.zhihu.com
zhihu-card-default.svg
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: CNN神经网络可以很好地实现MNIST数字识别数据集。MNIST数据集是一个非常流行的手数字识别数据集,包含60,000个训练样本和10,000个测试样本。CNN神经网络可以通过卷层、池化层和全连接层等结构,对图像进行特征提取和分类,从而实现对手数字识别。在实现过程中,需要对数据进行预处理、构建模型、训练模型和评估模型等步骤。 ### 回答2: MNIST是机器学习领域中最基础的图像分类问题之一,目标是将手数字识别成对应的数字CNN神经网络由于其较高的效果和较快的速度,被广泛应用于此类问题中。 首先,我们需要明确CNN神经网络的基本结构。它由多个卷层和池化层组成,其中卷层用于提取图像中的特征,而池化层则用于降低数据维度,减少运算量。在最后一层全连接层,特征将被映射到数字1-10的输出,以进行分类。 对于MNIST数字数据集,我们需要对数据进行预处理和格式化,以适应卷神经网络的输入。我们可以将每个图片的大小调整为28x28像素,并将其转换为黑白图像。由于图像中的每个像素都代表相应位置的亮度值,我们需要在神经网络进行标准化和归一化。 接下来,我们可以使用Keras框架搭建一个简单的卷神经网络。其中,我们可以通过添加卷层和池化层来实现特征提取和减少数据维度。在第一个卷层后,我们可以添加一个批标准化层,它可以使每个神经元的输出分布更加均衡,从而提高训练效果。在卷神经网络的输出端,我们可以添加一个全连接层,用于进行分类。 在完成网络结构的搭建之后,我们需要对卷神经网络进行训练。我们可以通过设置合适的损失函数和优化算法来实现。针对MNIST数据集,我们可以选择使用交叉熵作为损失函数,随机梯度下降作为优化算法。我们可以通过调整学习率、正则化等参数,来提高训练效果。 最后,我们可以将卷神经网络应用到MNIST测试集中进行验证,并评估其识别准确率。通过逐步调整网络结构和参数,我们可以不断改进卷神经网络的性能,并实现更准确的手数字识别。 ### 回答3: MNIST数字识别是计算机视觉领域中一个经典的问题,它要求从图像中识别出手数字。而CNN神经网络是目前最有效的解决方案之一。 CNN神经网络是一种深度学习模型,通过输入层、卷层、池化层和全连接层等模块组成。在MNIST数字识别中,图片输入层将长度为28*28的二维像素矩阵作为输入,经过卷层、池化层、全连接层等几个步骤后输出对应的数字。 卷层的作用是提取图像的特征,由于MNIST数字数据集的像素尺寸较小,因此用到的卷核尺寸也较小。这里我们选取的卷核为5*5,每个卷进行时将每个像素与其周围的8个像素做卷操作,这样可以从图像中提取更多的特征信息。 池化层的作用是减小图像的尺寸,在卷层中提取的特征信息可能包含了相同重复或无用的信息,因此需要对其进行降维处理。在MNIST数字识别中,我们采取的是平均池化的方式,即将相邻的4个像素取平均值,将这个4*4的图像块变为一个单独的像素。 全连接层的作用是将提取出的特征信息映射到输出层,输出对应的数字。在MNIST数字识别中,我们选取两个全连接层,其中第一层的神经元数量为120,第二层的神经元数量为84。最后,输出层的神经元数为10,每个神经元对应一个数字。 在训练模型时,我们采用交叉熵损失函数和随机梯度下降法更新权重。具体来说,我们将训练集分成若干个批次(batch),每次训练只使用其中一个批次的数据并对网络进行反向传播更新权重。 实验结果表明,CNN神经网络能够在MNIST数字识别数据集上达到98%以上的识别率,比传统的机器学习方法(如SVM等)具有更高的准确率。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值