


学习平面直角坐标系时,我们知道点A(a,b)关于x轴对称的点B(a,-b),关于y轴对称的点C(-a,b)。我们可以运用点的对称性求抛物线关于坐标轴对称的解析式。
看如下例题:
例1、求抛物线y=x2-4x-3关于x轴对称的抛物线。
解法一,利用顶点式:
y=x2-4x-3=(x-2)2-7
抛物线y=x2-4x-3的顶点为(2,-7)。
抛物线y=x2-4x-3关于x轴对称得到的抛物线形状大小与原抛物线一样,但开口的方向改为向下,顶点关于x轴对称。所以所求抛物线的二次项系数是-1,顶点为(2,7)。
所以,抛物线y=x2-4x-3关于x轴对称的抛物线为y=-(x-2)2+7.
解法二,利用点的对称性求:
设点P(x,y)在对称后的抛物线上,则P点关于x轴对称的对称点为P′(x,-y)必在抛物线y=x2-4x-3上。点P′(x,-y)符合解析式y=x2-4x-3。
所以在y=x2-4x-3中,用x代换x,用-y代换y
得-y=x2-4x-3,即y=-x2+4x+3为抛物线y=x2-4x-3关于x轴对称的抛物线。
小结:抛物线关于x轴对称,将解析式中的(x,y)换成它关于x轴对称的点(x,-y),即求出y=ax2+bx+c关于x轴对称的抛物线为y=-ax2-bx-c.
例2. 求抛物线y=2x2+4x-5关于y轴对称的抛物线。
解法一,利用顶点式:
y=2x2+4x-5=2(x+1)2-7
所以,抛物线y=2x2+4x-5的顶点为(-1,-7)。
因为,抛物线y=2x2+4x-5关于y轴对称后的抛物线形状大小与原来的一样,开口的方向保持不变,顶点关于y轴对称。所以,所求抛物线的二次项系数是2,顶点为(1,-7)。
所以,抛物线y=2x2+4x-5关于y轴对称的抛物线为y=2(x-1)2-7.
解法二、利用点的对称性:
设点P(x,y)在对称后的抛物线上,则P点关于y轴对称的对称点为P′(-x,y)必在抛物线y=2x2+4x-5上,所以,点P′(-x,y)符合解析式y=2x2+4x-5。
所以在y=2x2+4x-5中,用-x代换x,用y代换y,得y=2(-x)2+4(-x)-5,即y=2x2-4x-5为所求的抛物线。
小结:抛物线关于y轴对称,即将解析式中的(x,y)换成它的关于y轴的对称点(-x,y),即可求出y=ax2+bx+c关于y轴对称的抛物线y=ax2-bx+c.