leetcode 923:三数之和的多种可能

题目描述

给定一个整数数组 A,以及一个整数 target 作为目标值,返回满足 i < j < k 且 A[i] + A[j] + A[k] == target 的元组 i, j, k 的数量。

由于结果会非常大,请返回 结果除以 10^9 + 7 的余数

 

示例 1:

输入:A = [1,1,2,2,3,3,4,4,5,5], target = 8
输出:20
解释:
按值枚举(A[i],A[j],A[k]):
(1, 2, 5) 出现 8 次;
(1, 3, 4) 出现 8 次;
(2, 2, 4) 出现 2 次;
(2, 3, 3) 出现 2 次。

示例 2:

输入:A = [1,1,2,2,2,2], target = 5
输出:12
解释:
A[i] = 1,A[j] = A[k] = 2 出现 12 次:
我们从 [1,1] 中选择一个 1,有 2 种情况,
从 [2,2,2,2] 中选出两个 2,有 6 种情况。

提示:

  1. 3 <= A.length <= 3000
  2. 0 <= A[i] <= 100
  3. 0 <= target <= 300

解题思路

本题最直观的解法是三层循环寻找A[i]+A[j]+A[k] = target (i<j<k)但是O(N3)一定会超时,然后考虑优化到O(N2logN),A[i]+A[j] = target - A[k],也就是在两层循环内部执行lower_bound()和upper_bound(),结果依旧会超时。比较好的解决办法是分析三个数的关系:(1)三个数两两都相等;(2)三个数中只有两个数相等;(3)三个数都不相等;

int threeSumMulti(vector<int>& A, int target) {
        map<long long,long long> mp;
        long long mod = 1e9+7;
        map<long long,long long>::iterator iti,itj,itk;
        int len = A.size();
        long long ans = 0;
        for(int i=0;i<len;i++) mp[A[i]]++;
        for(iti = mp.begin();iti!=mp.end();iti++){
            for(itj = mp.begin();itj!=mp.end();itj++){
                int k = target - iti->first - itj->first;
                itk = mp.find(k);
                if(itk == mp.end()) continue;
                if((iti->first == itj->first) && (itj->first == k)) ans += (iti->second * (iti->second - 1) * (iti->second - 2))/6;
                else if((iti->first == itj->first) && (itj->first != k)) ans += (iti->second *(iti->second - 1)/2)*itk->second;
                else if((iti->first < itj->first) && (itj->first < k)) ans += iti->second* itj->second * itk->second;
                ans = ans % mod;
            }
        }
        return ans;
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值