ios软件商店上架老被打回_iOS迅雷TestFlight测试版,名额有限!解决“无法载入App”的问题!...

8f10b0081188082e51c227b2c9b01fa0.gif

大家好,我是趣哥

欢迎关注/置顶/星标本公众号

关注后每天晚上 22:10 获取最新资源

a79ae03d21555cb50dde570f9bc502f7.gif

今日资源:iPhone迅雷

适用系统:iOS

29d88a1e1c762570b1a68258bb9d8924.gif

相信果粉都知道,国内的App Store的审核机制非常严格,就连迅雷在内的很多“敏感”软件都无法上架,导致非常多的神器都选择发布TestFlight测试版。

不过,最近很多地区已经无法访问TestFlight了,下载App时会提示:”TestFlight无法接入App Store Connect,请稍后再试“。那么,今天咱就来解决这个问题!  昨天的神器你错过了吗: 车门已焊死,谁也别想下车!“老司机”直接起飞... 01

 iOS迅雷(iOS)

相信大家都知道迅雷上架商店了吧,不过是阉割了磁力下载功能的,需要把磁力添加到云盘,再回到App下载,这就有点麻烦了...很多小伙伴都想用回之前的TF版,今天趣哥就满足你们! 支持小编

生活不易,下面的?小卡片希望大家可以 [ 点击一下 ] ,你的顺手点击将是我坚持的动力,点一下即可,万分感谢!

02

  功能介绍

出现 TF 无法载入App,主要是网络原因,看反馈好像广东地区都会。最简单的方法就是修改 WIFI 的 DNS。

e85dbf839a5de12d7e91b56b2971d9fb.png

首先进入手机 设置 - 无线局域网 ,点击目前连接的WiFi的最右边感叹号按钮。

77351fc90a36606d201a48ca0b9c44ac.png

然后进入配置DNS,将自动改为手动,在DNS服务器一栏点击添加服务器(默认的删掉),填入 8.8.8.8 或者 8.8.4.4 ,备用 9.9.9.9,添加一个就可以,不行就换一个试试。最后点击右上角的“存储”。

a6859ef3c54d8c773d39b7fc4d5be839.png

这样就可以去下载testflight的应用了,就是速度有点慢。下载完后,记得把DNS改回”自动“,不然会影响网速。

b09ccc4f8a8221cdfd86a6de360a91aa.png

                      a79ae03d21555cb50dde570f9bc502f7.gif

看完以上内容,记得做三件事情:

  • 底部点个”在看“,告诉趣哥你来过。

  • 无论多忙,请花 1 秒钟把它放到你的圈子里!可能你的朋友都有需要!谢谢!

  • 资源都有时效性,及时下载保存,如不想错过好资源,可以置顶或星标公众号,每天晚上22:10为你送达

02eedbb88c04d2149ee15e795c3716d5.png

文字丨排版丨作图丨测试丨by有趣点

公众号回复【迅雷】获取软件02eedbb88c04d2149ee15e795c3716d5.png

支持我请帮忙点个“在看”和转发
### 如何评估和验证 MATLAB 中 `polyfit` 函数进行的曲线拟合结果准确性 为了全面评估和验证通过 `polyfit` 进行的多项式拟合的效果,可以采用多种方法来衡量其准确性和可靠性。 #### 使用决定系数 R² 来评价模型的好坏 R² 是一种常用的统计度量标准,用来表示数据之间的关系有多强。对于 `polyfit` 的输出结果而言,在计算得到回归直线之后可以通过下面的方式求得 R²: ```matlab % 已知x,y为原始数据向量,n代表所选次数 p = polyfit(x, y, n); % 计算n次多项式的系数 y_fit = polyval(p,x); SStot = sum((y-mean(y)).^2); SSres = sum((y-y_fit).^2); Rsquared = 1-(SSres/SStot); disp(['The coefficient of determination is ', num2str(Rsquared)]); ``` 该代码片段展示了如何基于 `polyfit` 和 `polyval` 函数构建预测值并进一步计算残差平方和与总离差平方和的比例从而得出 R² 值[^1]。 #### 可视化比较实际观测值与拟合后的趋势线 绘制散点图连同最佳匹配的趋势线有助于直观理解两者间的差异程度。这不仅能够帮助识别异常点还便于观察整体模式是否合理。 ```matlab plot(x, y,'o'); hold on; xlabel('Independent Variable'); ylabel('Dependent Variable'); title('Data Points and Fitted Curve'); xfit = linspace(min(x), max(x)); yfit = polyval(p, xfit); plot(xfit, yfit, '-r', 'LineWidth', 2); legend('Observed Data','Fitted Line') grid on; hold off; ``` 这段脚本实现了将原始数据点及其对应的理论估计值绘制成图形以便于对比分析[^2]。 #### 检查剩余误差分布情况 理想情况下,如果模型足够好,则残差应该随机分布在零附近而没有任何明显规律可循。因此,查看残差直方图或QQ图可以帮助判断是否存在潜在问题。 ```matlab figure(); subplot(2,1,1) histogram(residuals,'Normalization','pdf'); title('Residual Histogram') subplot(2,1,2) qqplot(residuals); title('Normal Probability Plot of Residuals') ``` 上述代码分别创建了一个正态概率图(QQ plot)以及标准化频率下的直方图用于展示残差特性[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值