1至10根号计算机,根号1到10分别约等于多少

满意答案

dcebd7a0de6265b6ccae5ead692f1eab.png

Ever天赐

2017.03.17

dcebd7a0de6265b6ccae5ead692f1eab.png

采纳率:59%    等级:9

已帮助:711人

√1=1,√2=1.414,√3=1.732,√4=2,√5=2.236,√6=2.449,√7=2.656,√8=2.828,√9=3,√10=3.162

以上根号1到10的结果只取小数点后3位,其中初等数学最常用的数值是√2=1.414,以及√3=1.732。10以内的根号可以手算计算答案,具体方法如下:

例:√3。已知1²<3<2²

第一步:

Ans=(1+3/1)/2=2(ans为答案)

第二步:Ans=(2+3/2)/2=1.75

第三步:Ans=(1.75+3/1.75)/2=1.732

第四步:Ans=(1.732+3/1.732)/2=.....

由此类推,直至计算出想要的精度。

扩展资料:

开二次方的根据:(10a+b)²=100a²+20ab+b²=100a²

+

b(20a+b)。用“15129”举例如下:

(1)因为在被开方数中a是以100倍出现的,所以被开方数应该两位一分节,即1,51,29、

(2)第一节为1,所以a只能是1。

(3)第一节减去1后为0,续上下一节后为51。

(4)公式中括号里20a

b的a是被20倍出现的,所以用20来试除59,试商2,b即为2。

(5)20a+b=22,b(20a+b)=2×22=44

(6)51-44=7,够减,继续下一步。若不够减,把试商减1后重做第三步即可。

参考资料来源:搜狗百科-根号

10分享举报

数据集介绍:多类道路车辆目标检测数据集 一、基础信息 数据集名称:多类道路车辆目标检测数据集 图片数量: - 训练集:7,325张图片 - 验证集:355张图片 - 测试集:184张图片 总计:7,864张道路场景图片 分类类别: - Bus(公交车):城市道路与高速场景中的大型公共交通工具 - Cars(小型汽车):涵盖轿车、SUV等常见乘用车型 - Motorbike(摩托车):两轮机动车辆,含不同骑行姿态样本 - Truck(卡车):包含中型货运车辆与重型运输卡车 标注格式: YOLO格式标注,包含归一化坐标的边界框与类别标签,适配主流目标检测框架。 数据特性: 覆盖多种光照条件与道路场景,包含车辆密集分布与复杂背景样本。 二、适用场景 自动驾驶感知系统开发: 用于训练车辆识别模块,提升自动驾驶系统对道路参与者的实时检测与分类能力。 交通流量监控分析: 支持构建智能交通管理系统,实现道路车辆类型统计与密度分析。 智慧城市应用: 集成至城市级交通管理平台,优化信号灯控制与道路资源分配。 学术研究领域: 为计算机视觉算法研究提供标准化评测基准,支持多目标检测模型优化。 三、数据集优势 高场景覆盖率: 包含城市道路、高速公路等多种驾驶环境,覆盖车辆静止、行驶、遮挡等现实场景。 精细化标注体系: 采用YOLO标准格式标注,每张图片均经过双重质检,确保边界框与类别标签的精准对应。 类别平衡设计: 四类车辆样本量经科学配比,避免模型训练时的类别偏向问题。 工程适配性强: 可直接应用于YOLO系列模型训练,支持快速迁移至车载计算平台部署。 现实应用价值: 专注自动驾驶核心检测需求,为车辆感知模块开发提供高质量数据支撑。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值