k重特征值必有k个线性无关的_线性代数总结(1)

这篇博客详述了线性代数的基础概念,包括线性方程组的矩阵表示、行列式的计算、向量空间、秩以及解线性方程组的方法。讨论了k重特征值对应线性无关解的重要性,并通过行列式性质、增广矩阵和克拉默法则来分析线性方程组的解的情况。还涉及了解空间、基础解系和子空间的维数等概念。
摘要由CSDN通过智能技术生成

58ee249242e03af85b0f71c058fedf70.png

详细文字在图片下方

aa46cf03b1160af764e7fafb8c6f5d29.png

线性方程组与矩阵

初等行列变换

  • 把一个方程的倍数加到另一个方程
  • 交换两方程位置
  • 用一个非零数乘某方程

名词

  • 阶梯形方程组 与 简化阶梯形方程组
  • 增广矩阵 与 系数矩阵
  • 零矩阵(元素全为0) 方阵(m级矩阵)
  • 主元:非零行从左数起第一个不为0的元素
  • 主变量:以主元为系数的未知量
  • 自由未知量:除主变量外的其余未知量
  • 一般解:对于解
    ,其一般解为

行列式

矩阵与行列式

  • 行列式都是n阶的,只有矩阵才mxn
  • 矩阵A的行列式记作|A|、det(A)

n元排列

  • n个不同自然数的一个全排列
  • 顺序、逆序、逆序数:以4元排列2341为例
    • 顺序有23等
    • 逆序有21 31 41三对
    • 逆序数:
  • 奇排列:逆序数为奇数
  • 偶排列:逆序数为偶数
  • 对换:例如2341的3和1调换,其余不动,记作(3,1)
  • 对换改变n元排列的奇偶性:变换一次即变性。证明:相邻对换,不断相邻从而拓展到一般对换

行列式计算

1 基础计算

  • 展开式

例如:三阶行列式共3!项

  • 上(下)三角行列式 :主对角线下(上)方的元素全为0

2 行列式性质

  • 转置,行列式的值不变。
    • 转置记为
    • 因此以下对于行的操作,对于列也成立
  • 行列式一行的公因子可以提取出来
  • 一行(a+c) = 两个 a + c
  • 两行互换,行列式反号
  • 两行相同,行列式值为0。所以两行成比例,行列式为0;一行倍数加到另一行上,行列式值不变

3 行列式按一行(列)展开

  • 余子式:

(i,j)元的余子式记作

。以(i,j)元为中心,划去该行该列剩下的行列式
  • 代数余子式:

(i,j)元的代数余子式

。(移到第一项)
  • n阶行列式A的计算:(一行/一列)
  • 行列式第i行元素与第k行相应元素的代数余子式的乘积之和为0(相当于把第k行元素换成了第i行,列同)

4 行列式按k行(列)展开

以5阶行列式

为例

  • k阶子式:任选k行、k列,记为
    • 二阶子式,选1、2行与4、5列,记为
  • k阶子式的余子式,记为
    • 上述二阶子式的余子式
  • 代数余子式:
    • 上述二阶子式的代数余子式
  • 拉普拉斯定理:对于行列式
    :选取k行/k列,则这k行/k列元素形成的所有k阶子式 与 它们各自的代数余子式 的乘积之和等于

5 范德蒙行列式

数域

定义

  • 设K为复数集的一个子集
  • K满足
  • (K对于加减乘除四种运算封闭) 即任意
    ,都有

例子:有理数集Q 实数集R 复数集C

向量空间

数域K上的n维向量空间

定义

  • 满足加法运算、数量乘法运算
  • 满足8条运算法则

名词

  • 元素:n维向量
  • 分量:
    是向量
    的第i个分量
  • 行向量、列向量
  • 行向量组、列向量组

向量组

  • 线性组合:
    的一个线性组合
  • 线性表出:
    则称
    可以由
    线性表出
  • 线性相关、线性无关向量组
    • 线性组合等于零向量:
    • 向量组线性相关:
      不全为0
    • 向量组线性无关:
      全为0
  • 向量组等价:
    • 向量组1 与 向量组2 等价:记作
    • 向量组1的每一个向量,都可以由向量组2线性表出
    • 向量组2的每一个向量,都可以由向量组1线性表出
    • 性质:反身性、对称性、传递性

向量组的秩

  • 极大线性无关组:
    • 向量组的部分组
    • 这个部分组线性无关
    • 从向量组的其余向量中任取一个添加进去,得到的新部分组都线性相关
  • 向量组的秩:向量组的极大线性无关组所含向量个数
  • 全由零向量组成的向量组的秩:0
  • 向量组
    的秩记为
  • 引理:一个向量组可以由另一个线性表出
    • 向量组
      可以由向量组
      线性表出
      • 如果
        ,则向量组
        线性相关
      • 如果
        线性无关,则
        • so,等价的线性无关向量组所含向量个数相等
          • so,向量组任意两个极大线性无关组所含向量个数相等
  • 延伸组与缩短组
    • 向量组线性无关,延伸组线性无关
    • 向量组线性相关,缩短组线性相关

矩阵的秩

  • 矩阵的行秩与列秩的统称,记为
    (对矩阵A)
  • 列秩:矩阵列向量组的秩;行秩:矩阵行向量组的秩
  • 矩阵的初等行列变换不改变秩:因为等价向量组有相同的秩
  • 矩阵的行秩 = 列秩:阶梯型矩阵+延伸组证明
    • 行列秩均等于J的非零行个数
    • J的主元所在的列,构成列向量组的一个极大线性无关组。(转置,行一样)


解线性方程组

解的情况:无解、唯一解、无穷解

解情况的判别

1 矩阵

  • 线性方程若有解,则称它相容的,否则称不相容的。
  • 增广矩阵经过初等行变换后,s个方程,r个非零行,n个未知量,判断该方程组是否有解:

  • 齐次线性方程组
    • 定有零解
    • 若有非零解则定有无穷解
    • 上述法则:
      定无穷解,从而
      定无穷解

2 行列式:克莱姆法则

  • 1 n个方程的n元线性方程组:
    • 有唯一解:行列式
    • 无解或无穷解:
    • 对于齐次线性方程组,
      则有无穷解
  • 2 若n个方程的n元线性方程组有唯一解,该解为:

是系数行列式

3 向量组

  • 问题定义:常数项列向量
    能否 由系数矩阵的列向量组线性表出(
    即为列向量组的系数)
  • 判断有无解
    • 线性方程组有解的充要条件:系数矩阵和增广矩阵有相同的秩
      • 若线性方程组有解:
        • 当系数矩阵的秩等于未知量个数时,唯一解
        • 当系数矩阵的秩小于未知量个数时,无穷解
  • 齐次线性方程组
    • 系数矩阵的列向量组
      • 线性相关:有非零解
      • 线性无关:只有零解
    • (从行列式看)因此,可得系数行列式结果
      • 线性相关:系数行列式 = 0
      • 线性无关:系数行列式 ≠ 0
    • 延伸组与缩短组
      • 向量组线性无关,该向量组的延伸组也线性无关
      • 向量组线性相关,该向量组的缩短组也线性相关


线性方程组的解集的结构

线性子空间(简称 子空间):

  • 定义
  • 如果
    的一个非空子集U满足
  • U对于
    加法封闭:
  • U对于
    乘法封闭:
  • 则称U是
    的一个线性子空间
  • 平凡的子空间:
  • 的一个子空间,称零子空间。
  • 的一个子空间。
  • 非平凡的子空间:其余子空间均为非平凡的子空间

齐次线性方程组

  • 解空间:由子空间定义,知齐次线性方程组的解集W是
    的一个子空间,简称为解空间
  • 基础解系
  • 定义
  • 齐次线性方程组有非零解,如果它的有限多个解
    满足
  • 线性无关
  • 该齐次线性方程组的每一个解都可以由这有限多个解线性表出
  • 则称
    是该齐次线性方程组的一个基础解系
  • 齐次线性方程组有无穷解时,一定有基础解系
  • 且每个基础解系的解向量数相等,均为
  • 解集
  • 通解

n-rank(A)的证明:

14d05dfea93d80bf1420cd4c312650b2.png

ccafcde5d4bcf274f60e2d5f43aa37a5.png

8234439174f551c99c1c4d5d3d3f1e34.png

非齐次线性方程组解集结构

  • 导出组:一个齐次线性方程组
  • 通解:非齐次的特解 + 导出组的通解
  • 解唯一:导出组只有零解

基与维数

是U的一个基(把U当解空间理解)
  • 定义
  • 的一个子空间,
    的向量组
    满足
  • 向量组线性无关
  • U中每一个向量都可以由向量组线性表出
  • 标准基:单位向量组
  • 非零子空间任意两个基,所含向量数相等(r=s)

维数

  • 定义:基所含向量数,记为dimU
  • 对于解空间U,有dim U = n - rank(A)
  • 坐标:如果知道一个基,则子空间中每一个向量都可以由基来线性表出,且表出方式唯一,系数为在该基下的坐标

向量组生成子空间分析

  • 由向量组(该向量组不一定线性无关)生成子空间
  • 基:该向量组的一个极大线性无关组,即为该子空间的基
  • 维数:从而该向量组的秩 = 该子空间的维数
  • 矩阵的行空间:矩阵的行向量组生成的子空间,矩阵的列空间:矩阵的列向量组生成的子空间。这两个空间维数相等
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值