图卷积神经网络GCN--注意力网络代表作

Graph Attention Networks

1 Graph Attention Networks

[Velickovic P, 2017, 1] 提出了图的注意力网络,利用注意力机制聚合信息,相当于空间法的卷积。

h ⃗ i ( l ) \vec{h}_{i}^{(l)} h i(l)表示第 l l l层的第 i i i个顶点的特征向量。

  • attention coefficient :

e i j = a ( W h ⃗ i ( l ) , W h ⃗ j ( l ) ) . (1.1) e_{ij} = a \left( W \vec{h}_{i}^{(l)}, W \vec{h}_{j}^{(l)} \right). \tag{1.1} eij=a(Wh i(l),Wh j(l)).(1.1)

其中 a ( ⋅ ) a(\cdot) a()是非线性激活函数,原文给的是 LeakReLU α = 0.2 ( a ⃗ [ W h ⃗ i ( l ) ∥ W h ⃗ j ( l ) ] ) \text{LeakReLU}_{\alpha=0.2} \left( \vec{a} \left[ W \vec{h}_{i}^{(l)} \| W \vec{h}_{j}^{(l)} \right] \right) LeakReLUα=0.2(a [Wh i(l)Wh j(l)]) ∥ \| 是拼接操作。

  • attention mechanism

α i j = softmax j ( e i j ) = exp ⁡ ( e i j ) ∑ k ∈ N ( i ) exp ⁡ ( e i k ) . (1.2) \alpha_{ij} = \text{softmax}_j(e_{ij}) = \frac{ \exp(e_{ij}) }{\sum_{k \in \mathcal{N}(i)} \exp (e_{ik}) }. \tag{1.2} αij=softmaxj(eij)=kN(i)exp(eik)exp(eij).(1.2)

用注意力作信息聚合。单头注意力:
h ⃗ i ( l + 1 ) = σ ( ∑ j ∈ N ( i ) α i j W h ⃗ j ( l ) ) . (1.3) \vec{h}_{i}^{(l+1)} = \sigma \left( \sum_{j \in \mathcal{N}(i)} \alpha_{ij} W \vec{h}_{j}^{(l)} \right). \tag{1.3} h i(l+1)=σjN(i)αijWh j(l).(1.3)

多头注意力为:
h ⃗ i ( l + 1 ) = ∥ k = 1 K σ ( ∑ j ∈ N ( i ) α i j k W k h ⃗ j ( l ) ) . (1.4) \vec{h}_{i}^{(l+1)} = {\Large \|}_{k=1}^{K} \sigma \left( \sum_{j \in \mathcal{N}(i)} \alpha_{ij}^k W^k \vec{h}_{j}^{(l)} \right). \tag{1.4} h i(l+1)=k=1KσjN(i)αijkWkh j(l).(1.4)

平均注意力:
h ⃗ i ( l + 1 ) = σ ( 1 K ∑ k = 1 K ∑ j ∈ N ( i ) α i j k W k h ⃗ j ( l ) ) . (1.5) \vec{h}_{i}^{(l+1)} = \sigma \left( \frac{1}{K} \sum_{k=1}^{K} \sum_{j \in \mathcal{N}(i)} \alpha_{ij}^k W^k \vec{h}_{j}^{(l)} \right). \tag{1.5} h i(l+1)=σK1k=1KjN(i)αijkWkh j(l).(1.5)

在这里插入图片描述

2 Watch Your Step: Learning Node Embeddings via Graph Attention

[Abuelhaija S, 2018, 2] 在利用转移矩阵 T = diag ( A × 1 ⃗ N ) − 1 × A \mathcal{T}=\text{diag}(A \times \vec{1}_N)^{-1} \times A T=diag(A×1 N)1×A作随机游走计算共现矩阵 D D D(co-occurrence matrix)时,使用注意力作概率对每次转移加权。
E [ D ; Q 1 , Q 2 , ⋯   , Q C ] = P ~ ( 0 ) ∑ k = 1 C Q k ( T ) k = P ~ ( 0 ) E Q [ ( T ) k ] . (2.1) \mathbb{E}\left[D;Q_1,Q_2,\cdots,Q_C \right] = \tilde{P}^{(0)} \sum_{k=1}^{C} Q_k \left( \mathcal{T} \right)^k = \tilde{P}^{(0)} \mathbb{E}_Q[\left( \mathcal{T} \right)^k]. \tag{2.1} E[D;Q1,Q2,,QC]=P~(0)k=1CQk(T)k=P~(0)EQ[(T)k].(2.1)

其中 C C C是总的随机游走步数, P ~ ( 0 ) \tilde{P}^{(0)} P~(0)是初始的位置对角阵, ∑ k Q k = 1 \sum_k Q_k = 1 kQk=1

使用注意力机制:
( Q 1 , Q 2 , Q 3 , ⋯   ) = softmax ( ( q 1 , q 2 , q 3 , ⋯   ) ) . (2.2) (Q_1,Q_2,Q_3,\cdots) = \text{softmax}((q_1,q_2,q_3,\cdots)). \tag{2.2} (Q1,Q2,Q3,)=softmax((q1,q2,q3,)).(2.2)

3 GaAN: Gated Attention Networks for Learning on Large and Spatiotemporal Graphs

[Zhang J, 2018, 3] 使用了Gate门控注意力,就是在[Velickovic P, 2017, 1]提出的注意力中的 ∑ j ∈ N ( i ) α i j W h ⃗ j ( l ) \sum_{j \in \mathcal{N}(i)} \alpha_{ij} W \vec{h}_{j}^{(l)} jN(i)αijWh j(l)的部分再加入一个权重门控:
h ⃗ i ( l + 1 ) = ∥ k = 1 K σ ( ∑ j ∈ N ( i ) g i k α i j k W k h ⃗ j ( l ) ) . (3.1) \vec{h}_{i}^{(l+1)} = {\Large \|}_{k=1}^{K} \sigma \left( \sum_{j \in \mathcal{N}(i)} g_{i}^{k} \alpha_{ij}^k W^k \vec{h}_{j}^{(l)} \right). \tag{3.1} h i(l+1)=k=1KσjN(i)gikαijkWkh j(l).(3.1)
门控 g ⃗ i \vec{g}_i g i:
g ⃗ i = ( g i 1 , ⋯   , g i K ) = σ ( h ⃗ i ( l ) ∥ max ⁡ j ∈ N ( i ) ( { W 1 h ⃗ j ( l ) + b ⃗ 1 } ) ∥ ∑ j ∈ N ( i ) h ⃗ j ( l ) ∣ N ( i ) ∣ ) W 2 + b ⃗ 2 . (3.2) \vec{g}_i = (g_{i}^{1},\cdots,g_{i}^{K}) = \sigma \left( \vec{h}_i^{(l)} \| \max_{j \in \mathcal{N}(i)} \left(\{ W_1 \vec{h}_j^{(l)} + \vec{b}_1 \} \right) \| \frac{ \sum_{j \in \mathcal{N}(i)} \vec{h}_j^{(l)} }{|\mathcal{N}(i)|} \right) W_2 + \vec{b}_2. \tag{3.2} g i=(gi1,,giK)=σ(h i(l)jN(i)max({W1h j(l)+b 1})N(i)jN(i)h j(l))W2+b 2.(3.2)

在这里插入图片描述

4 Graph Classification using Structural Attention

[Lee J B, 2018, 4] 提出了结构注意力,就是对邻居信息聚合时使用了注意力机制。

在这里插入图片描述

上图中 f s ( ⋅ : θ s ) f_s(\cdot:\theta_s) fs(:θs)对邻居顶点信息聚合, f h ( ⋅ : θ h ) f_h(\cdot:\theta_h) fh(:θh)对隐藏层表达更新, f c ( ⋅ : θ c ) f_c(\cdot:\theta_c) fc(:θc)使用新的隐藏层表达预测标签, f r ( ⋅ : θ r ) f_r(\cdot:\theta_r) fr(:θr)则生成新的排序向量(反映顶点的类型重要性排序) r ⃗ t \vec{r}_t r t

f s ( ⋅ : θ s ) f_s(\cdot:\theta_s) fs(:θs)也称作Step Module,工作原理见下图。 A , D A,D A,D别是邻接矩阵和顶点特征向量矩阵, c t − 1 c_{t-1} ct1是当前顶点。而 r ⃗ t − 1 \vec{r}_{t-1} r t1是排序向量, τ : R N × D → R N × R \tau: \reals^{N \times D} \rightarrow \reals^{N \times R} τ:RN×DRN×R R R R是顶点类型,也可以看成是将原理的特征变换后的新特征表达。其中 ( T r ⃗ t − 1 ) T (T \vec{r}_{t-1})^T (Tr t1)T就是注意力权重。

在这里插入图片描述

参考文献

  • 4
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值