filtert的作用matlab,MATLAB函数的filter2 conv2 imfilter2函数 与opencv中的cvFilter2D函数的异同及图像的频率滤波...

最近在做科研的过程中用到图像的滤波,由于图像数据量比较大,就考虑空域转化频域相乘来提高效率,测试的的时候出现MATLAB 与OPENCV的结果不相同,以前也知道MATLAB和OPENCV的滤波机理不相同,但是具体的过程也是不是太清楚,于是用程序测试filter2,conv2,imfilter2,cvFilter2D函数的异同。

conv2用来计算源图像A和滤波模板H的卷积,计算过程为将滤波模板旋转180度后,进行掩膜计算,计算的过程中要对边界补0计算。

a=[1 2;3 4];

b=[-1 1;-2 2];

c=conv2(a,b,'full')

输出为

0818b9ca8b590ca3270a3433284dd417.png

conv2的计算可以使用频域的乘积计算,但是要对矩阵的边界补零

a1=[1 2 0;3 4 0;0 0 0];

b1=[-1 1 0;-2 2 0;0 0 0];

a1f=fft2(a1);

b1f=fft2(b1);

abf1=a1f.*b1f;

c1=ifft2(abf1)

输出为

0818b9ca8b590ca3270a3433284dd417.png

filter2计算过程为对滤波模板H进行180度旋转后,再调用conv2函数。由于conv2函数又对模板旋转180度,等于直接对滤波模板H直接进行掩膜计算。

a=[1 2;3 4];

b=[-1 1;-2 2];

c2=filter2(a,b,'full')

c3=filter2(b,a,'full')

输出结果:

0818b9ca8b590ca3270a3433284dd417.png

可以看出filter2函数已经不满足卷积的可交换律了

imfilter则是对函数filter2和conv2函数的综合,当选择参数conv时则,进行卷积计算与函数conv2函数相同, 选择corr参数时,进行相关运算和filter2过程相同

opencv中的滤波函数  cvFilter2D( const CvArr* src, CvArr* dst, const CvMat* kernel,  CvPoint anchor CV_DEFAULT(cvPoint(-1,-1)))可以实现图像的卷及滤波,但是cvFilter2D处理时不对滤波核进行180度旋转,边界处理时实行镜像处理

#include "iostream"

#include "cv.h"

#include "highgui.h"

using namespace std;

void speedy_convolution(const CvMat *A,const CvMat *B,CvMat *C);

void ShowMat(CvMat *m);

int main()

{

float A1[]={1,2,3,4};float B1[]={-1,1,-2,2};

//float A[]={1,2,0,3,4,0,0,0,0};

//float B[]={-1,1,0,-2,2,0,0,0,0};

CvMat Ma1=cvMat(2,2,CV_32FC1,&A1);

CvMat Mb1=cvMat(2,2,CV_32FC1,&B1);

CvMat *C1=cvCreateMat(3,3,CV_32FC1);

CvMat *C=cvCreateMat(2,2,CV_32FC1);

double t=cvGetTickCount();

speedy_convolution(&Ma1,&Mb1,C1);//

t=cvGetTickCount()-t;

cout<

cout<

ShowMat(C1);

t=cvGetTickCount();

cvFilter2D(&Mb1,C,&Ma1,cvPoint(1,1));

t=cvGetTickCount()-t;

cout<

cout<

ShowMat(C);

cout<

}

void ShowMat(CvMat *m)

{

int i,j;

for (i=0;irows;i++)

{

for (j=0;jcols;j++)

{

cout<

}

cout<

}

}

void speedy_convolution(

const CvMat *A,//size:M1 * N1

const CvMat *B, //size : M2 * N2

CvMat *C//size:(M1+M2-1) * (N1+N2-1)

)

{

int dft_M = cvGetOptimalDFTSize(A->rows + B->rows -1);

int dft_N = cvGetOptimalDFTSize(A->cols + B->cols -1);

CvMat *dft_A = cvCreateMat(dft_M , dft_N , A->type);

CvMat *dft_B = cvCreateMat(dft_M, dft_N, B->type);

CvMat tmp;

//copy A TO dft_A and pad dft_A with zeros

cvGetSubRect(dft_A,&tmp , cvRect(0,0,A->cols,A->rows));

cvCopy(A,&tmp);

cvGetSubRect(dft_A,&tmp,cvRect(A->cols,0,dft_A->cols - A->cols , A->rows));

cvZero(&tmp);

//no need to pad bottom part of dft_A with zeros because of

//use nonzero_rows parameter in cvDFT() call below

cvDFT(dft_A,dft_A,CV_DXT_FORWARD,A->rows);

//repeat the same with the second array

cvGetSubRect(dft_B,&tmp,cvRect(0,0,B->cols,B->rows));

cvCopy(B,&tmp);

cvGetSubRect(dft_B,&tmp,cvRect(B->cols,0,dft_B->cols - B->cols , B->rows));

cvZero(&tmp);

//no need to pad bottom part of dft_B with zeros because of

//use nonzero-rows parameter in cvDFT() call below

cvDFT(dft_B,dft_B,CV_DXT_FORWARD,B->rows);

//or CV_DXT_MUL_CONJ to get correlation rather than convolution

cvMulSpectrums(dft_A,dft_B,dft_A,0);

//calculate only the top part

cvDFT(dft_A,dft_A,CV_DXT_INV_SCALE,C->rows);

cvGetSubRect(dft_A,&tmp,cvRect(0,0,C->cols,C->rows));

cvCopy(&tmp,C);

cvReleaseMat(&dft_A);

cvReleaseMat(&dft_B);

}

测试结果:

0818b9ca8b590ca3270a3433284dd417.png  

0818b9ca8b590ca3270a3433284dd417.png   

0818b9ca8b590ca3270a3433284dd417.png 

0818b9ca8b590ca3270a3433284dd417.png

cvFilter2D 处理过程对Mb1的边界镜像补数为:

0818b9ca8b590ca3270a3433284dd417.png

再以Ma1:

0818b9ca8b590ca3270a3433284dd417.png的cvPoint(1,1)为滤波核为中心进行掩膜计算

一般图像滤波的模板都是关于中心对称的,因此在计算图像卷积滤波时,是否对卷积模板旋转180度关系不是太大。

由于矩阵比较小,fft的效果不是太明显,如果是图像的维数比较大的话,效率的提高就比较可观了

以上只是本人的个人感悟,不当之处希望和大家一起进步。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值