php随机数字不重复使等式成立_随机规划模型(Stochastic Programming Models)

95f0700833e366b2e85162b92c1471fc.gif

报童问题(The Newsvendor Problem)

假设公司必须决定某种产品的订购数量

来能满足需求
。 订购成本为每单位
。 如果需求
大于
,则公司需要以单价
追加一个订单。如果
,则其成本等于
,如果
,则产生持有成本
。因此总成本为

其中

表达
,同时假设后追加订单的单价大于订购成本

公式的目的是使总成本

最小。 这里
是决策变量,需求
是参数。 如果需求已知,则相应的优化问题可以用以下形式表示:

其中的总成本函数可以改写为

这是一个分段线性函数,且最小值在

取到。也就是说如果需求已知,那么最好的决策肯定就是订购数量等于需求数量。

然而实际中往往是在需求已知前就需要决定订购数量。 在这种情况下进行处理的一种方法是将需求

视为随机变量。 用
表示当被视为随机变量时的需求,以便将其与特定实现
区分开。 我们进一步假设
的概率分布是已知的(或者说我们可以从历史数据中估计
的分布)。 此时,我们要考虑的则是期望的成本最小,即

上述优化命题通过优化(最小化)平均总成本来求解最佳的订购数量。在这个问题中这个优化命题是可以得到闭式解的。

考虑随机变量

的累计密度函数
,注意
,则期望
可以表示为

推导:因为
,可以得到

求导并令导数为

可得

因此最优解为:

在实际应用中,这种闭式解往往难以得到,因此可以通过近似求解。比如采用场景(Scenario)的方法。假设随机变量

为有限支撑分布,它的取值为
且对应的概率为
。则可以将期望写为加权和的形式

对应报童问题的总成本函数,我们可以转化为如下线性规划

进一步可以将平均总成本可以表示为

最差情况(Worst Case Approach)

一般在考虑鲁棒优化时会考虑最差情况。通常假设随机变量在一定范围内,比如

,则最差情况的优化命题写成

对于报童问题,上述优化命题等价于

如果除了知道未知变量的范围还知道它的均值

,则优化命题的形式还可以写成

其中

表示支撑在
且均值为
的概率测度集。

机会约束(Chance Constraints)

如果我们想要控制成本

使得其小于一定的数值对于任意需求情况均成立,可以用以下不等式来表示

当不确定集大点的时候,往往这个不等式可能就不能成立,对应的问题也就无解。在这种情况下一种更合理的方法是采用机会约束,也就是说允许成本在一定概率内大于这个阈值

或者

仅仅只要一个很小的整数

也能对原始约束有很好的松弛!

Author: Francois Louveaux, John R. Birge Publisher: Springer (2000) Binding: Hardcover, 448 pages pricer: $119.00 ISBN-10: 0387982175 editorialreviews The aim of stochastic programming is to find optimal decisions in problems which involve uncertain data. This field is currently developing rapidly with contributions from many disciplines including operations research, mathematics, and probability. Conversely, it is being applied in a wide variety of subjects ranging from agriculture to financial planning and from industrial engineering to computer networks. This textbook provides a first course in stochastic programming suitable for students with a basic knowledge of linear programming, elementary analysis, and probability. The authors aim to present a broad overview of the main themes and methods of the subject. Its prime goal is to help students develop an intuition on how to model uncertainty into mathematical problems, what uncertainty changes bring to the decision process, and what techniques help to manage uncertainty in solving the problems. The first chapters introduce some worked examples of stochastic programming and demonstrate how a stochastic model is formally built. Subsequent chapters develop the properties of stochastic programs and the basic solution techniques used to solve them. Three chapters cover approximation and sampling techniques and the final chapter presents a case study in depth. A wide range of students from operations research, industrial engineering, and related disciplines will find this a well-paced and wide-ranging introduction to this subject.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值