
报童问题(The Newsvendor Problem)
假设公司必须决定某种产品的订购数量
其中
公式的目的是使总成本
其中的总成本函数可以改写为
这是一个分段线性函数,且最小值在
然而实际中往往是在需求已知前就需要决定订购数量。 在这种情况下进行处理的一种方法是将需求
上述优化命题通过优化(最小化)平均总成本来求解最佳的订购数量。在这个问题中这个优化命题是可以得到闭式解的。
考虑随机变量
推导:因为且
,可以得到
![]()
求导并令导数为
因此最优解为:
在实际应用中,这种闭式解往往难以得到,因此可以通过近似求解。比如采用场景(Scenario)的方法。假设随机变量
对应报童问题的总成本函数,我们可以转化为如下线性规划
进一步可以将平均总成本可以表示为
最差情况(Worst Case Approach)
一般在考虑鲁棒优化时会考虑最差情况。通常假设随机变量在一定范围内,比如
对于报童问题,上述优化命题等价于
如果除了知道未知变量的范围还知道它的均值
其中
机会约束(Chance Constraints)
如果我们想要控制成本
当不确定集大点的时候,往往这个不等式可能就不能成立,对应的问题也就无解。在这种情况下一种更合理的方法是采用机会约束,也就是说允许成本在一定概率内大于这个阈值
或者
仅仅只要一个很小的整数